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RESUMO

FRALETTI, P. T.  Classificação de Imagens por Segmentação:  uma análise de
fotos  aéreas  da  Floresta  Amazônica  através  de  Aprendizado  de  Máquina  com
Python, e com implementação em um Sistema Embarcado.   2023.  X f.  Monografia
(Trabalho  de  Conclusão  de  Curso)  –  Escola  de  Engenharia  de  São  Carlos,
Universidade de São Paulo, São Carlos, 2023.

A preocupação  quanto  à  preservação  do  meio  ambiente  é  evidente  em

tempos atuais. Nesse sentido, diminuir os casos de desmatamento é uma das ações

consideradas no combate às mudanças climáticas, principalmente em regiões de

florestas nativas e com enorme influência no clima como a Floresta Amazônica. Com

isso, por meio de classificação de imagens por segmentação através de aprendizado

de máquina,  este  trabalho tem como objetivo analisar  e  mapear fotos da região

amazônica,  de  modo a  categorizar  seu conteúdo.  As categorias  analisadas são:

Vegetação de Floresta (VF), Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação

(SV). Para isso, é necessário extrair informações de intensidade de brilho e contorno

de fronteiras das imagens por meio de filtros. Foram processadas 120 fotos, sendo

mapeadas pixel a pixel, de maneira que estes representam as amostras a serem

treinadas  e  testadas  pelo  modelo  de  machine  learning através  do  algoritmo  de

Descida de Gradiente Estocática e do classificador Support Vector Machine. Após a

obtenção do modelo treinado, este é implementado em um sistema embarcado para

que, em um projeto futuro, seja acoplado a um veículo aéreo não tripulado (drone),

realizando o processamento das imagens em tempo real. Por meio disso, é possível

atingir  o  objetivo  final  de  monitorar  ao  longo  do  tempo  a  região  amazônica  e

contribuir na identificação de áreas desmatadas para que autoridades competentes

tomem a devida providência. A exatidão do modelo de aprendizado de máquina foi

de 66,62%, além da precisão média de 64%, recall médio de 60% e F1-Score médio

de 61%. Por  fim,  conclui-se  que a  performance do modelo  pode ser  melhorada

através de outras estratégias como utilizar imagens com três canais de cores, como

o RGB, utilizar como amostras as fotos e não cada um de seus pixeis,  além de

utilizar  uma  câmera  hiperespectral  para  capturar  as  imagens,  permitindo  maior

resolução em diferentes bandas do espectro eletromagnético.

Palavras-chave: Floresta Amazônica. Classificação de imagens. Segmentação. 

Machine Learning (Aprendizado de Máquina). 





ABSTRACT

FRALETTI, P. T.  Image Classification through Segmentation: an analysis of aerial
pictures of the Amazon Forest through Machine Learning with Python, implementing
it in an Embedded System.   2023.  X p.  Monograph (Course final project) – São
Carlos School of Engineering, University of São Paulo, São Carlos, 2023.

Concerns regarding environmental preservation are evident nowadays. This

way,  reducing deforestation is  one of  the actions taken to  face climate changes,

mostly  in  native  forest  regions  with  enormous  influence  on  climate,  such  as  the

Amazon Forest. Hence, employing image classification using segmentation through

machine  learning,  this  project  aims to  analyze  and map pictures  of  the  Amazon

region to categorize their content. The analyzed categories are Forest Vegetation,

Understorey Vegetation and Bushes, and No Vegetation. For that, it is necessary to

extract bright intensity and border contour information from the images by applying

filters.  A hundred-twenty  pictures  were  processed,  being  mapped  pixel  by  pixel,

which represent the samples to be trained and tested by the machine learning model

through the Stochastic Gradient Descent algorithm and the Support Vector Machine

classifier. After obtaining the trained model, it is implemented in an embedded system

in order to, in a future project, be assembled on an Unmanned Aerial Vehicle (UAV),

processing the images in real-time. Thus, it is possible to achieve the final objective

of  monitoring  throughout  the  time  the  Amazon  region  and  contributing  to  the

identification  of  deforested  areas  so  the  competent  authorities  can  take  the

appropriate measures. The accuracy of the machine learning model was 66.62%,

while the average precision was 64%, the average recall was 60%, and the average

F1-Score was 61%. Finally, it is possible to conclude that the performance of the

model can be improved through other strategies such as using images with three

color channels, as RGB, utilizing pictures as samples instead of each one of their

pixels, beyond using a hyperspectral camera to capture the images, bringing higher

resolution in different bands of the electromagnetic spectrum.

Keywords: Amazon Forest. Image classification. Segmentation. Machine Learning.
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1 INTRODUÇÃO

Com o passar dos anos, busca-se cada vez mais medidas de preservação da

natureza frente aos problemas climáticos enfrentados desde meados do século XIX.

Nesse contexto, a Floresta Amazônica chama a atenção do mundo quanto à luta

para sua conservação, uma vez que é extremamente importante para regular o clima

e os níveis de carbono (ALSHEHRI; OUADOU; SCOTT, 2023). Essa luta se dá pela

exploração do bioma através do garimpo e da substituição da floresta pela pecuária

e agricultura em larga escalas através do desmatamento (Rivero et al.1, 2009 apud

ZANOTTA et al., Automatic Methodology for Mass Detection of Past Deforestation in

Brazilian Amazon, 2019). Consequentemente, o desmatamento traz consequências

não só para o clima, mas também para a biodiversidade e a qualidade do solo e da

água (Foley et al.2, 2005 apud PISL, Classification of Tropical Deforestation Drivers

with Machine Learning and Satellite Image Time Series, 2023).

Nesse  sentido,  na  tentativa  de  colaborar  com  a  preservação  do  meio

ambiente,  técnicas  de  inteligência  artificial,  como  o  aprendizado  de  máquina

(machine learning)  podem contribuir  para ajudar  no problema do desmatamento.

Com  isso,  através  da  classificação  de  imagens  por  segmentação,  é  possível

determinar regiões de uma foto que contenham áreas de floresta, bem como outras

classes, para compreender o ambiente a ser analisado.

A  segmentação  de  imagem  possui  diversas  aplicações  (AKAL;  BARBU,

2019), dentre elas a detecção de objetos/regiões em uma imagem. Dessa forma, a

classificação  de  imagem,  que  é  um processo  de  visão  computacional,  classifica

imagens  baseado  em  seu  conteúdo,  direcionando  para  alguma  das  categorias

predefinidas (CHUGH et al., 2020).

No  entanto,  uma  vez  que  as  imagens  podem  conter  mais  de  uma

classificação, este trabalho tende a analisar pixel a pixel de cada imagem com o

1 RIVERO,  S.  et  al.  Pecuária  e  desmatamento:  uma  análise  das  principais  causas  diretas  do
desmatamento na Amazônia, Revista Nova Economia Belo Horizonte - MG, vol. 19, no. 1, pp. 41-
66, 2009.

2 FOLEY, J. et al. Global consequences of land use, Science (New York N.Y.), vol. 309, Aug. 2005.
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intuito de classificá-los nas diferentes categorias. As categorias escolhidas foram:

Vegetação de Floresta, que compreende toda área com árvores ou floresta densa;

Vegetação Rasteira ou Arbustos, compreendendo gramados, campos e arbustos; e

Sem Vegetação,  que  inclui  construções  humanas,  estradas  e  vias,  rios,  lagos e

regiões desmatadas.

As imagens a serem analisadas foram retiradas do programa Google Earth,

que disponibiliza imagens de satélite de diferentes regiões do mundo. Assim, foram

capturadas  fotos  da  região  amazônica  com  diversos  elementos,  dentre  eles

florestas, rios, lagos, gramados, e mais.

Para gerar o modelo de classificação de imagens, é necessário utilizar de

algum algoritmo de  machine learning.  Neste trabalho, foi  utilizado o algoritmo de

Descida Gradiente Estocástica junto do classificador de  Support  Vector Machine,

explicados ao longo deste trabalho.

Com  isso,  espera-se  obter  um  modelo  com  exatidão  elevada,  capaz  de

detectar com boa precisão os diferentes elementos de uma foto,  classificando-os

dentre  as  três categorias preestabelecidas.  Além disso,  com o modelo pronto,  a

proposta final deste trabalho é de implementá-lo em um sistema embarcado, com o

intuito  de,  em um novo projeto,  acoplá-lo  em um  drone para  que a  análise das

imagens seja feita em tempo real. A partir disso, o objetivo final deste trabalho é

fornecer informações visuais de possíveis mudanças no ambiente dado uma área

geográfica específica,  de modo que,  ao longo do tempo, possa-se analisar se a

determinada  região  sofreu  desmatamento.  Assim,  com  essas  informações,  é

possível que o poder público e autoridades competentes possam promover ações

que mitiguem a destruição da Floresta Amazônica. 
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2 CONTEXTUALIZAÇÃO

Com o intuito de apresentar um contexto para a aplicação deste trabalho, as

seções seguintes constroem o panorama necessário para compreender o cenário

atual  do  Brasil  quanto  à  Floresta  Amazônica,  de  modo que os  resultados deste

trabalho possam colaborar com sua preservação.

2.1 CARACTERÍSTICAS GEOGRÁFICAS

A região  amazônica  ocupa  um extenso  território  na  América  do  Sul.  Sua

cobertura  compreende  áreas  da  Bolívia,  Peru,  Equador,  Colômbia,  Venezuela,

Guiana, Guiana Francesa, Suriname e Brasil, o qual possui cerca de 60% de todo o

bioma.  Estima-se  que  15% da  biodiversidade  do  planeta  esteja  presente  nesse

ecossistema  (SECAS…,  2013),  sendo  conhecido  apenas  “300  espécies  de

mamíferos,  mais  de  1.000  de  aves,  240  de  répteis,  600  de  anfíbios,  3.000  de

formigas, 3.000 de abelhas e 1.800 de borboletas” (BIOMAS…, 2016).

Além da exuberância da fauna amazônica, a vegetação e solo também são

bastante  diversos.  No  contexto  nacional,  embora  a  Floresta  Amazônica  seja

conhecida como apenas um bioma com características uniformes em toda sua área,

Biomas… (2016) expõe um conjunto de quatro deles, com características distintas:

Floresta  Amazônica  Densa  Sempre-Verde  de  Terra  Firme,  Floresta  Amazônica

Aberta  Sempre-Verde  de  Terra  Firme,  Floresta  Amazônica  Densa  Sempre-Verde

Ripária de Várzea e Igapó, e Savana Amazônica ou Campinarana.
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Figura 1 – Mapa dos principais biomas no Brasil, Pantanal e Campos Sulinos.

Fonte: Editado pelo autor3.

Com foco nos dois maiores biomas amazônicos, o de Floresta Amazônica

Densa Sempre-Verde de Terra Firme é constituído por  centenas de espécies de

árvores densamente posicionadas, formando um dossel (“teto”) em suas copas, o

que promove sombra em seu interior.  Com características semelhantes,  o bioma

Floresta  Amazônica  Aberta  Sempre-Verde  de  Terra  Firme  se  diferencia  por  ter

árvores mais espaçadas e cobertas por cipó, permitindo maior entrada de luz solar

(BIOMAS…, 2016).

2.2 CARACTERÍSTICAS SOCIOAMBIENTAIS

Apesar do enorme potencial natural a ser estudado através da biodiversidade

e recursos hídricos,  além da importância  e  influência no  clima global  (BECKER;

STENNER, 2008, p.8), a Floresta Amazônica enfrenta o contínuo avanço predatório

das  ações  antrópicas.  Essas,  acometem  porções  relevantes  do  território  com  o

objetivo de extrair seus recursos, ou então somente substituir o terreno por alguma

atividade que consideram mais lucrativa.

3 Edição de imagem retirada de . Biomas brasileiros. 1. ed. São Paulo: Oficina de Textos, 2016.
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Nesse sentido, o desmatamento se encontra no cerne da questão, pois é o

responsável por viabilizar desastres ecológicos em detrimento de um ecossistema

em  pleno  equilíbrio  e  funcionamento.  Dentre  os  desastres,  as  queimadas,  o

empobrecimento  do solo  e  a redução da qualidade da água e do ar  têm papel

fundamental no declínio da Floresta Amazônica.

Os períodos de seca tendem a propiciar a ocorrência de queimadas. Através

deles, há um decaimento no número de árvores e perda de folhas (Philips et al.4,

2009  apud .  Secas na Amazônia: causas e consequências, 2013), o que permite

maior  incidência  de  luz  solar  através  da  abertura  do  dossel,  ocasionando  no

ressecamento  do  material  orgânico  e  consequente  vulnerabilidade  à  queimadas

(SECAS…, 2013). No entanto, Secas… (2013) conclui que apesar de o clima ser

determinante no aumento das queimadas, o uso do solo garante que aconteçam.

Dessa forma, a ação do ser humano por meio do corte seletivo e desmatamento

intensifica a probabilidade de queimadas (Uhl; Kauffman5, 1990; Cochrane et al.6,

1999; Cochrane; Schulze7, 1999; Barlow; Peres8, 2004; Nepstad et al.9, 2004 apud .

Secas  na  Amazônia:  causas  e  consequências,  2013),  além  da  redução  da

precipitação (Laurance; Williamson10, 2001; Laurance et al.11, 2002; Nobre; Sellers;

4 PHILLIPS, O. L. et al. Drought sensitivity of the Amazon rainforest. Science , v. 323, p. 1344-1347,
2009.

5 UHL, C.; KAUFFMAN, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in 
the eastern amazon. Ecology , v. 71, n. 2, p. 437-449, 1990.

6 COCHRANE, M. A. et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests. 
Science , v. 284, n. 5421, p. 1832-1835, 1999.

7 COCHRANE, M. A.; SCHULZE, M. D. Fire as a recurrent event in tropical forests of the Eastern 
Amazon: Effects on Forest Structure, Biomass, and Species Composition. Biotropica , v. 31, p. 1, 
2-16, 1999.

8 BARLOW, J.; PERES, C. A. Ecological responses to El Nino-induced surface fires in central 
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Transactions of the Royal Society B-Biological Sciences, v. 359, p. 1443, 367-380, 2004.

9 NEPSTAD, D. et al. Amazon drought and its implications for forest flammability and tree growth: a 
basin-wide analysis. Glob. Change Biol ., v. 10, p. 704-717, 2004.
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and climate change in the Amazon. Conservation Biology , v. 15, n. 6, p. 1529-1535, 2001.
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Conservation Biology , v. 16, n. 3, p. 605-618, 2002.
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Shukla12,  1991;  Silva  Dias  et  al.13,  2005;  Costa  et  al.14,  2007  apud .  Secas  na

Amazônia: causas e consequências, 2013).

Ademais, apesar de a Floresta Amazônica oferecer uma beleza natural ímpar,

com árvores atingindo dezenas de metros de altura, seu solo é considerado escasso

em nutrientes. Dessa forma, o que mantém a exuberância da floresta é a eficiência

na reciclagem de nutrientes através do retorno constante da biomassa ao solo e sua

reabsorção facilitada por meio de fungos nas raízes das árvores (BIOMAS…, 2016).

Todavia,  ainda que a pobreza do solo seja uma característica natural,  Biomas…

(2016) enfatiza que o desmatamento e as queimadas tendem a piorar essa situação,

quebrando o ciclo de renovação dos nutrientes, pois como não há árvores, estes são

lixiviados, sendo levados aos rios pelas chuvas, ou perdidos para a atmosfera. 

Por fim, as explorações agropecuária, madeireira e fundiária (seja pelo uso

industrial,  ou  pelo  garimpo)  impulsionam o  desmatamento  na  região  amazônica,

afetando  as  bacias  dos  principais  afluentes  do  rio  Amazonas,  contaminando-as

através da fumaça, insumos agrícolas e do mercúrio por meio das atividades de

garimpo (BECKER; STENNER, 2008). Becker e Stenner (2008) evidenciam que o

Brasil se encontra no grupo dos dez maiores emissores de gás carbônico, sendo

que o maior responsável é o desmatamento da Amazônia. Além disso, os autores

apontam que “o aumento em curso da demanda global por produtos intensivos em

água,  como a  carne  e  a  soja,  representa  uma pressão  extra  sobre  as  grandes

reservas d'águas”, motivando a substituição da floresta pelo pasto. 

2.3 PROPOSTA DE TRABALHO

Em vista  do  que  foi  discutido  nas  seções anteriores,  este  trabalho  tem a

intenção de proporcionar  uma análise  do desmatamento  na Floresta Amazônica,

12 NOBRE, C. A.; SELLERS, P. J.; SHUKLA, J. Amazonian deforestation and regional climate 
change. Journal of Climate , v. 4, n. 4, p. 957-988, 1991.

13 SILVA DIAS, M. A. F.; COHEN, J. C. P.; GANDU, A. W. Clouds, rain and biosphere interactions in 
Amazon. Acta Amazonica , v. 35, n. 2, p. 215-222, 2005.

14 COSTA, M. H. et al. Climate change in Amazonia caused by soybean cropland expansion as 
compared to caused by pastureland expansion. Geophysical Research Letters , v. 34, 2007.
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com o intuito de evidenciar regiões com e sem cobertura vegetal de floresta por meio

de imagens aéreas. 

 A área amazônica a ser estudada encontra-se no “Arco do desmatamento”.

De acordo com o Instituto de Pesquisa Ambiental da Amazônia (IPAM), o Arco do

desmatamento é a:

Região onde a fronteira agrícola avança em direção à floresta e também
onde encontram-se os maiores índices de desmatamento da Amazônia. São
500 mil km² de terras que vão do leste e sul do Pará em direção oeste,
passando por Mato Grosso, Rondônia e Acre. 

A Figura 2 destaca a região correspondente ao Arco do desmatamento. Como

exposto anteriormente, a área em destaque tem predominância dos biomas Floresta

Amazônica  Aberta  Sempre-Verde  de  Terra  Firme  e  Floresta  Amazônica  Densa

Sempre-Verde de Terra Firme. Contudo, o recorte a ser analisado compreende as

proximidades de São Félix do Xingu-PA, tendo em vista a degradação do alto curso

do rio Tapajós devido à atividade humana (BECKER; STENNER, 2008), além de ser

a cidade que mais emite CO2 do Brasil pelo mesmo motivo (GRILLI, 2021).
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Figura 2 – Arco do desmatamento.

Fonte: Editado pelo autor15.

Dessa forma, a partir da definição da área de interesse, o passo seguinte será

obter imagens aéreas do local. Para isso, considerando as limitações deste trabalho,

as fotografias serão obtidas pelo Google Earth, software que permite a visualização

da Terra através de imagens de satélite. As imagens capturadas terão distância do

solo de 600 metros.

Em seguida, será aplicado um modelo de visão computacional que analisará

as imagens, tendo-as como base para treinar a inteligência artificial.  Os métodos

discutidos  em seções  posteriores  terão  como objetivo  identificar  três  categorias:

regiões com floresta (Vegetação de Floresta),  regiões de vegetação não arbórea

(Vegetação Rasteira e Arbustos) e áreas urbanas, rios e lagos (Sem Vegetação).

Com isso, espera-se analisar regiões desmatadas e com recuperação de floresta ao

longo  do  tempo,  monitorando  a  Floresta  Amazônica  com o  passar  dos  anos,  e

15 Edição e compilação de imagens retiradas de Mapa do Brasil, Info Escola – 
https://www.infoescola.com/geografia/mapa-do-brasil/; Fronteira do desmatamento na Amazônia 
avançou entre 2018 e 2019, afirma estudo, O Globo, 2019 – 
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-
2019-afirma-estudo-1-24141480; São Félix do Xingu, Wikipedia – https://pt.wikipedia.org/wiki/S
%C3%A3o_F%C3%A9lix_do_Xingu.

https://www.infoescola.com/geografia/mapa-do-brasil/
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480


25

oferecendo dados para basear políticas públicas ambientais. Vale mencionar que o

objetivo deste trabalho é treinar o modelo matemático para que possa ser utilizado

periodicamente em campo.

Com o modelo treinado, será feito sua integração a um hardware embarcado,

de modo que as imagens sejam processadas nele. Nesse sentido, este trabalho

pode servir como alicerce para outros projetos que queiram, por exemplo, analisar

em tempo real a região amazônica. Ainda, havendo a possibilidade de adaptar o

hardware embarcado a um  drone (veículo aéreo não tripulado)  com uma câmera

apropriada, é possível fotografar e processar a imagem de maneira simultânea.
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3 METODOLOGIA

Tendo  em  vista  a  situação  atual  da  Floresta  Amazônica  apresentada

anteriormente,  vê-se  necessário  planos  de  ação  para  contribuir  com  sua

manutenção. Nesse sentido, a proposta estudada nesta seção tem como objetivo

mapear a região amazônica através de fotos de satélite, de modo a segmentá-las

em três  classes:  Vegetação de Floresta,  Vegetação Rasteira  e Arbustos,  e  Sem

Vegetação (como rios, lagos e elementos de intervenção humana – edificações, vias

e áreas desmatadas). Com isso, é possível determinar ao longo do tempo mudanças

na paisagem de áreas específicas a partir do aumento ou diminuição das regiões

classificadas.

A  análise  de  classificação  das  regiões  das  fotos  é  feita  através  de

aprendizado  de  máquina  tradicional  (do  inglês  Traditional Machine  Learning,

referenciado ao longo do texto como ML) com a linguagem de programação Python.

Sendo uma área da Inteligência Artificial,  ML compreende a análise de dados e

algoritmos  com  a  intenção  de  simular  o  aprendizado  humano,  melhorando-o

gradualmente  (IBM,  2023).  Assim,  o  modelo  de  aprendizado  de  máquina  deste

trabalho é treinado imagem por imagem, de modo a assimilar diferentes texturas,

contornos e tonalidades para  definir  em novas fotos  as  diferentes  classificações

possíveis.

A figura abaixo ilustra todo o processo discutido nesta seção. Primeiramente,

as imagens originais são reunidas, servindo de base para realizar a classificação

nas imagens de referência. Logo, são aplicados filtros nas imagens originais com o

intuito de destacar formas e luminosidade para facilitar sua compreensão.  Assim,

cada imagem é mapeada pixel a pixel, sendo seus dados então organizados em

matrizes. Em sequência, cada um dos pixeis de cada imagem original, carregando

consigo suas características definidas pelos filtros, é alocado ou em um grupo de

treino  ou um de teste.  Dessa forma,  o  respectivo  pixel  da  respetiva  imagem de

referência é designado a um grupo próprio de mesma classe (treino ou teste). Por

fim, o modelo é treinado com os grupos de treino de cada imagem e então testado

com os grupos de teste de todas as imagens treinadas até o momento para assim
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obter-se informações importantes como a exatidão. Após isso, todo o processo de

alocação dos grupos de treino e teste,  treinamento  e depois  teste  do modelo  é

repetido para cada imagem.

Figura 3 – Fluxograma do processo de treinamento e teste do modelo.

Fonte: Compilação do autor.

3.1 COMPOSIÇÃO DO ACERVO DAS IMAGENS ORIGINAIS

Considerando  que  modelos  de  machine  learning  necessitam  de  grandes

quantidades de dados como amostras para seu treinamento, é esperado que neste

caso o banco de fotos seja suficientemente grande. No entanto, é preciso definir o

que são amostras no caso em questão.
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De acordo com a página do Governo do Canadá (Government of Canada,

2023), na seção “Satellite imagery, elevation data, and air photos”, a classificação

digital de imagem:

[…] utiliza a informação espectral representada pelos números digitais em
uma  ou  mais  bandas  espectrais,  e  tenta  classificar  cada  pixel  baseado
nessa informação espectral. […] o objetivo é atribuir todos os pixeis de uma
imagem a classes ou temas específicos.

Em outras palavras, cada pixel é representado por um ou mais valores pelos

quais, em conjunto, definem a qual categoria de classificação aquele pixel pertence.

Como exemplo, dada uma imagem qualquer na escala RGB (Red, Green, Blue –

Vermelho, Verde e Azul, em português) de tamanho 1920 x 1080 pixels (px), esta é

interpretada computacionalmente  como uma matriz  de três  dimensões:  1920 por

1080 pixeis (duas dimensões),  tendo cada pixel três valores (terceira dimensão -

cada um deles indicando o valor de cada matiz dos quais vermelho, verde e azul).

Assim, considerando essa imagem como um array da biblioteca utilizada NumPy16,

dada a função  shape17,  a  representação seria  a seguinte:  (1920,  1080,  3).  Para

facilitar a computação dos dados, e neste caso para adequá-los aos requisitos das

bibliotecas trabalhadas em Python, as imagens são redimensionadas e convertidas

em escala de cinza, sendo então representadas por uma matriz de duas dimensões:

2.073.600 linhas (multiplicação de 1920 por 1080, agora em um mesmo eixo) por

uma coluna,  representando  os  valores  de  cada  pixel  na  escala  cinza.  Portanto,

considerando a representação da imagem como um  array,  esse seria o formato:

(2073600, 1).

Nesse sentido,  neste trabalho, cada amostra é uma linha dessa matriz de

duas dimensões, cujo valor do pixel esperado (a classe que pertence) encontra-se

na  matriz  de  duas  dimensões  da  imagem  correspondente  de  referência  com  o

mesmo índice. 

A partir disso, para o modelo em questão foram reunidas 20 fotos de satélite,

retiradas do Google Earth, de tamanho 1920 x 1080 px da região amazônica (mais

16 Para mais informações sobre array, acesse: 
https://numpy.org/doc/stable/reference/generated/numpy.array.html.

17 Mais informações sobre a função em: 
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html.

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html
https://numpy.org/doc/stable/reference/generated/numpy.array.html


30

precisamente da cidade de São Félix do Xingu – PA). As imagens foram capturadas

a uma distância de 600 m do solo. 

Assim, considerando as limitações de hardware do computador utilizado para

treinar o modelo de ML (processador Intel® Core™ i3-8130U CPU @ 2.20GHz, 2

núcleos,  4  threads;  20 GB de RAM),  essas imagens foram divididas em quatro,

totalizando 80 fotos de 960 x 540 px. Ainda, com o intuito de aumentar a quantidade

de fotos, cada uma delas teve uma cópia rotacionada em 180°.

Portanto,  o  banco  de  imagens  originais  totaliza  160  fotos,  cada  uma  de

tamanho  960  x  540  px.  Além  disso,  o  número  de  amostras  total  é  então  de

82.944.000,  que  são  divididos  em  grupos  de  treino  e  teste,  como  discutido

anteriormente.

Figura 4 – Imagem dividida em quatro, com suas respectivas partes rotacionadas em 180°.

Fonte: Compilação do autor.

3.2 COMPOSIÇÃO DO ACERVO DAS IMAGENS DE REFERÊNCIA

Baseadas em suas respectivas imagens originais, as imagens de referência

são aquelas que foram segmentadas dentre as três categorias:

• Vegetação de Floresta (VF)

• Vegetação Rasteira e Arbustos (VRA)
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• Sem Vegetação (SV)

Com isso,  cada  uma das  classificações  foi  representada  por  uma cor  na

escala RGB: VF representada por verde (0, 255, 0), VRA por azul (0, 0, 255) e SV

por vermelho (255, 0, 0). 

Figura 5 – Exemplo de imagem de referência segmentada na escala RGB.

Fonte: Compilação do autor.

A segmentação foi  realizada no editor de imagens Inkscape18,  sendo cada

categoria  definida  manualmente  com  as  ferramentas  do  software.  No  entanto,

percebeu-se após alguns testes do modelo que a quantidade de classificações era

bastante superior a três. A partir disso, é possível que no momento de exportar as

imagens  de  referência  do  editor  em formato  PNG,  as  fronteiras  entre  as  cores

tivessem valores RGB diferentes, e quando convertidos na escala de cinza, teriam

também valores diferentes.

Com isso, foi necessário realizar uma outra classificação. O primeiro ponto foi

considerar que a conversão do vermelho (RGB: 255, 0, 0) para escala de cinza é 76,

e da mesma forma para o verde (RGB: 0, 255, 0) sendo 150 e para o azul (RGB: 0,

0, 255) sendo 29. Então, pixel a pixel de cada imagem de referência, depois de ser

convertida na escala de cinza, foi analisado e se estivesse dentro dos limites de 0 e

18 Mais informações sobre o software em: https://inkscape.org/about/overview/.

https://inkscape.org/about/overview/


32

52 seria categorizado como 29 (azul), de 53 a 113 como 76 (vermelho), e de 114 a

255  como  150  (verde).  Dessa  forma,  foram  geradas  outras  160  imagens  de

referência com três classificações e na escala de cinza.

Figura 6 – Exemplo de imagem de referência segmentada na escala de cinza.

Fonte: Compilação do autor.

3.3 EXTRAÇÃO DE FEATURES – APLICAÇÃO DE FILTROS

 Como  visto  anteriormente,  no  caso  da  classificação  de  imagem  deste

trabalho, as amostras para treinar e testar o modelo de ML são pixeis com diferentes

valores,  analisados em conjunto para determinar a  qual  categoria  pertence cada

pixel. Nesse sentido, cada um desses valores é indicado como uma feature (um

atributo, uma característica) do pixel. Assim, um pixel pode ser entendido como um

array, um arranjo de atributos.

Esses atributos são obtidos por  meio  da aplicação de filtros  nas imagens

originais,  de modo que realcem estruturas das fotos, como contornos, texturas e

intensidade  de  brilho.  Segundo  Shijin  Kumar  e  Dharun  (2016),  “a  extração  de

características reduz o tamanho de dados de uma imagem, obtendo informações

necessárias  da  imagem  [a  ser]  segmentada”.  Assim,  a  grande  quantidade  de
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informações que cada pixel  possui  em uma dimensão é  filtrada e  separada em

várias camadas com as características mais importantes.

Contudo,  Shijin  Kumar  e  Dharun  (2016)  afirmam  que  obter  as  melhores

features  pode  ser  difícil  e  levar  tempo.  Por  outro  lado,  fornecer  os  atributos

adequados  ao  modelo  de  ML proporciona  exatidão  e  eficiência  na  tomada  de

decisão (SHAHAJAD; GAMBHIR; GANDHI, 2021).

A partir disso, nas subseções a seguir são apresentados os filtros utilizados

para  detectar  as  características  dos  pixeis  das  imagens  originais.  É  importante

mencionar que ao aplicar cada filtro, as respectivas funções em Python recebem a

imagem  já  convertida  em  escala  de  cinza,  filtram  e  transformam-na  em  uma

dimensão. Logo, os valores são organizados em dataframes da biblioteca  pandas:

estruturas de dados tabular de duas dimensões (pandas, 2023).

A estratégia  de  extração  de  features por  meio  de  filtros  foi  retirada  de

Bhattiprolu (2019).

3.3.1 Pixeis Originais

Considerando os valores originais dos pixeis das imagens retiradas do Google

Earth  após  o  processamento  na  escala  de  cinza,  é  possível  que  nem todas as

informações importantes de cada um deles sejam percebidas pelos filtros aplicados.

Devido a isso, como estratégia, utilizou-se os valores originais dos pixeis como uma

das features. 

3.3.2 Filtros Gabor

  Os  filtros  Gabor  são  produtos  da  modulação  de  sinais  sinusoidais  e

Gaussianos (MEHROTRA; NAMUDURI; RANGANATHAN, 1992). A partir do estudo
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aprofundado e  da representação matemática,  modelos  computacionais  baseados

em  Gabor  surgiram  para  detectar  contornos  e  texturas,  além  de  proporcionar

estimativas  de  fluxo  ótico  e  compactação  de  dados  de  imagem  (Manjunath;

CheUappa19,  1991;  Porat;  Zeevi20,  1989;  Daugman21,  1988  apud  MEHROTRA R.,

NAMUDURI K.R.,  RANGANATHAN N. Gabor  filter-based edge detection,  Pattern

Recognition, 1992).

O filtro Gabor é representado por uma expressão matemática no plano dos

complexos,  tendo  uma  parte  real  e  outra  imaginária.  Abaixo  encontra-se  a

expressão, na qual λ é o comprimento de onda do sinal sinusoidal, θ é a orientação

das faixas normais às paralelas da função Gabor, Φ é o deslocamento de fase, σ é o

desvio  padrão  do  sinal  Gaussiano,  γ  é  a  proporção  espacial,  e  x  e  y  são  as

coordenadas da imagem.

g (x , y ; λ ,θ ,Φ ,σ , γ)=exp(−x ' ²+γ ² y ' ²
2 σ ²

)exp(i (2π x'
λ

+Φ))

Onde:

x'=xcosθ+ ysenθ y'=−xsenθ+ ycosθ

Após alguns testes, foram definidos os valores a seguir:

λ=[0 , π
4
, 2π
4

, 3π
4

];θ=[ π
4
, 2 π
4

, 3 π
4

] ;Φ=0 ;σ=[1,3 ]; γ=[0.05 ,0.5]

Os filtros Gabor inseridos no código em Python foram aplicados através das

funções getGaborKernel()  e filter2D()  da biblioteca OpenCV22. Assim, considerando

todas  as  permutações  possíveis,  obteve-se  48  filtros  Gabor  para  cada  imagem

original, ou seja, 48 atributos diferentes para cada pixel de cada imagem. Abaixo há

um exemplo de foto com um dos filtros Gabor.

19 MANJUNATH, B.S. and CHEUAPPA, R. A computational approach to boundary detection, Proc. 
CVPR 91, pp. 358-363, 1991. 

20 PORAT, M. and ZEEVI, Y. Y. The generalized Gabor scheme of image representation in biological 
and machine vision, IEEE Trans. Pattern Analysis Mach. LntelL 10(4), 452-468, 1989.

21 DAUGMAN, J.G. Complete 2-D Gabor transforms by neural networks for image analysis and 
compression, IEEE Trans. ASSP 36(7), 1169-1179, 1988. 

22 Mais informações sobre as funções em: 
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51
cc3599 e 
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb36608
6b5a04.

https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51cc3599
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51cc3599
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Figura 7 –  Exemplo de imagem original e sua respectiva versão com um dos filtros Gabor.

Fonte: Google Earth (2023); Compilação do autor.

3.3.3 Filtro Canny

O filtro Canny é amplamente usado em visão computacional como forma de

detectar contornos e mudanças acentuadas de intensidade (DING; GOSHTASBY,

2001). Nesse sentido, o filtro Canny é operado por convolução da primeira derivada

da função Gaussiana, que indica o ponto de máximo dela, representando o contorno

(UFF, 2023). Segundo Ding e Goshtasby (2001), o filtro “classifica um pixel como

borda se seu gradiente de magnitude for maior do que o daqueles que estão ao seu

redor na direção de máxima mudança de intensidade”. Assim, são definidos limiares

superior e inferior de gradientes para servir como referência de quais pixeis devem

ser considerados borda (método chamado thresholding com histerese). 

O  filtro  foi  aplicado  no  código  através  da  função  Canny()  da  biblioteca

OpenCV23. Abaixo apresenta-se um exemplo de imagem original após a aplicação de

Canny.

23 Mais informações sobre a função em: 
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba
04e2232de.

https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
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Figura 8 - Exemplo de imagem original e sua respectiva versão com o filtro Canny.

Fonte: Google Earth (2023); Compilação do autor.

3.3.4 Filtro Roberts

O  filtro  Roberts  é  utilizado  para  detectar  linhas  horizontais  e  verticais

(Owotogbe; Ibiyemi; Adu24, 2019 apud AMORIM, A.; POLASTRI, M. J. Evaluation of

Edge Detection Filters Applied to Corroded Steel Sheets, 2020). O método utilizado é

simples, através de medições de gradientes espaciais por meio de núcleos 2x2 px e

suas cópias  rotacionadas em 90°  (FISHER et  al.,  2003-a).  Dessa forma,  o  filtro

realça regiões de alta frequência espacial que indicam as bordas.

No código, foi utilizada a função roberts() da biblioteca scikit-image25. A seguir,

a aplicação de Roberts em uma das imagens originais.

24 OWOTOGBE, J. S., IBIYEMI, T. S., ADU, B. A. Edge Detection Techniques on Digital Images - A 
Review, Int. J. Innov. Sci. Res. Technol., vol. 4, no. 11, pp. 329–332, 2019.

25 Mais informações da função em: 
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.roberts.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.roberts
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Figura 9 - Exemplo de imagem original e sua respectiva versão com o filtro Roberts.

Fonte: Google Earth (2023); Compilação do autor.

3.3.5 Filtro Sobel

Semelhante  ao  filtro  Roberts,  o  filtro  Sobel  tende  a  ser  mais  lento  para

computar. Além disso, em vez de um núcleo 2x2 px, utiliza um 3x3 px e sua cópia

rotacionada  em  90°  (FISHER  et  al.,  2003-b).  A aplicação  do  filtro  é  ideal  para

encontrar bordas com curvas suaves (AMORIM; POLASTRI, 2020).

No código em Python, foram utilizadas as funções  sobel_h() e sobel_v() da

biblioteca scikit-image26. Abaixo encontra-se um exemplo de aplicação do filtro.

26 Mais informações das funções em: 
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_h e https://scikit-
image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_h
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Figura 10 - Exemplo de imagem original e sua respectiva versão com o filtro Sobel.

Fonte: Google Earth (2023); Compilação do autor.

3.3.6 Filtro Prewitt

O  filtro  Prewitt,  assim  como  Roberts,  é  adequado  para  detectar  bordas

verticais  e  horizontais  (AMORIM;  POLASTRI,  2020).  Ademais,  Prewitt  é  também

semelhante a Sobel, uma vez que também utiliza núcleos 3x3 px (The University of

Auckland, 2023).

No código em Python, as funções prewitt_h() e prewitt_v() da biblioteca scikit-

image27 foram usadas. Abaixo encontra-se um exemplo de aplicação do filtro.

27 Mais informações das funções em: 
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_h e 
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_v.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_h
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Figura 11 - Exemplo de imagem original e sua respectiva versão com o filtro Prewitt.

Fonte: Google Earth (2023); Compilação do autor.

3.3.7 Filtro Gaussiano

O filtro  Gaussiano atua de modo a aplicar  média de pesos nos pixeis  de

acordo  com  a  distribuição  Gaussiana  (NIXON;  AGUADO,  2002).  Assim,  o  filtro

consegue desfocar a imagem, removendo detalhes e ruído (FISHER et al., 2003-c).

A expressão matemática é apresentada abaixo, na qual σ define o grau de desfoque,

e x e y são as coordenadas da imagem.

G (x , y ;σ )= 1
2 πσ ²

exp(−x ²+ y ²
2σ ²

)

Após testes, os valores de σ foram determinados como 1 e 3. O código em

Python utilizou da biblioteca SciPy a função gaussian_filter()28. A seguir, um exemplo

de foto com o filtro Gaussiano aplicado.

28 Mais informações sobre a função em: 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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Figura 12 - Exemplo de imagem original e sua respectiva versão com um dos filtros Gaussiano.

Fonte: Google Earth (2023); Compilação do autor.

3.3.8 Filtro Mediana

O filtro Mediana é usado para reduzir ruído, de modo a preservar detalhes da

imagem (FISHER et al., 2003-d). Atua de modo a substituir o valor de um pixel pela

mediana dos valores dos pixeis ao redor.

No código, foi utilizada a função median_filter()  da biblioteca SciPy29. Abaixo

há um exemplo de imagem com o filtro Mediana aplicado.

29 Mais informações sobre a função em: 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndima
ge.median_filter.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
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Figura 13 - Exemplo de imagem original e sua respectiva versão com o filtro Mediana.

Fonte: Google Earth (2023); Compilação do autor.

3.3.9 Filtro Chan-Vese

Segundo Akal e Barbu (2019), o filtro Chan-Vese aplica um método de baixo

nível de segmentação de imagem, de modo a manter constante a regularização de

comprimento das bordas em união com algoritmos de otimização para encontrar

regiões  de  interesse.  Em outras  palavras,  o  filtro  Chan-Vese  não  depende  das

bordas, mas sim de modelos de intensidade constante que definem regiões internas

e externas para que assim as fronteiras sejam encontradas. 

O código utilizou da função  chan_vese()  da biblioteca  scikit-image30. Abaixo

vê-se um exemplo de aplicação desse filtro.

30 Mais informações sobre a função em: 
https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_v
ese.

https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_vese
https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_vese
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Figura 14 - Exemplo de imagem original e sua respectiva versão com o filtro Chan-Vese.

Fonte: Google Earth (2023); Compilação do autor.

3.4 MAPEAMENTO E ORGANIZAÇÃO DOS PIXEIS EM MATRIZ

Depois de definidos as 57 variações de filtros, é necessário aplicá-los a cada

imagem. Assim, cada pixel é mapeado e recebe um atributo a partir de cada filtro.

Com isso, no total, cada pixel é representado por um arranjo de 57 atributos. Após a

aplicação de cada filtro, a imagem é redimensionada em apenas um eixo.

A partir disso, a cada imagem, os dados são organizados em um dataframe

resultante de outros  dataframes  cujas informações provêm de cada aplicação de

filtro. Um exemplo de dataframe é exibido a seguir:

              Gabor1  Gabor2  Gabor3  Gabor4  Gabor5  ...  Prewitt  Gaussiana_s3  Gaussiana_s7  Mediana  Chan_Vese
0                 0            0          104          92         27      ...        4             42                     60                  18              10
1                 0            0          127        112          9       ...      26             45                     61                  18              19
2                 0            0          182        163         27      ...      50             50                     61                  32              20
3                 0            0          255        241         34      ...      57             56                     62                  44              20
4                 0            0          255        255         35      ...      75             63                     62                  63              15
...                ...           ...           ...           ...           ...      ...      ...               ...                      ...                   ...               ...
518395       0            0          255        255         37      ...      21             60                     59                  54              66
518396       0            0          255        255         38      ...      27             61                     59                  63            146
518397       0            0          255        255         39      ...        9             62                     59                  66            200
518398       0            0          255        255         42      ...        5             62                     59                  67            240
518399       0            0          255        255         37      ...        3             62                     59                  67            255

[518400 rows x 57 columns]

Em seguida, cada  dataframe é alocado em um dicionário,  cuja chave é o

número da imagem. 

De  maneira  análoga,  o  mesmo  processo  acontece  com  as  imagens  de

referência. No entanto, em vez de de existirem dataframes que compõem um outro,
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como só há uma dimensão (uma vez que são os valores de referência), só existe um

dataframe  no  processo.  Abaixo  encontra-se  a  saída  do  dataframe  de  uma  das

imagens de referência.

               Imagens de Referência
0                           29
1                           29
2                           29
3                           29
4                           29
...                           ...
518395                 29
518396                 29
518397                 29
518398                 29
518399                 29

[518400 rows x 1 columns]

Logo depois, ambos os dicionários gerados pelas funções que processam as

imagens originais filtradas e as imagens de referência são convertidos em listas com

apenas  os  dataframes.  Isso  acontece  para  que  seja  possível  iterar  sobre  cada

dataframe  resultante  de  cada  imagem  original  filtrada  e  respectiva  imagem  de

referência.

3.5 DIVISÃO DAS MATRIZES ENTRE TREINO E TESTE

Na  função  principal  do  código,  cada  dataframe  de  cada  imagem  original

filtrada e cada dataframe da respectiva imagem de referência são iterados por vez.

Nesse sentido, respectivamente, os dataframes são denominados como dados X e

y. 

Assim, X e y são enviados para a função que tem o propósito de treinar o

modelo de machine learning junto ao modelo parcial até aquele momento, além de

todas as amostras de X e y de teste até então. Isso acontece a cada iteração para

cada imagem, de modo que no início, o modelo parcial é exatamente o classificador

com seus parâmetros pré-definidos (discutido na seção seguinte), e as amostras de

treino são, respectivamente, um dataframe e um array vazios.
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Dessa forma, já na função que treina o modelo de ML, X e y passam pela

função train_test_split() da biblioteca scikit learn31, de modo que 80% de cada grupo

de amostras sejam direcionados para treino, enquanto o restante seja direcionado

para  teste.  É  importante  mencionar  que,  para  garantir  a  reprodutibilidade  dos

resultados, o argumento random_state é definido como um inteiro. Assim, dado o

mesmo conjunto X e y, os grupos de treino e teste serão os mesmos.

Tendo os grupos de treino e teste definidos,  obtém-se,  portanto,  X_treino,

y_treino, X_teste e y_teste. Logo, y_treino e y_teste são convertidos para arranjos

de uma dimensão para adequar-se aos requisitos das funções que os utilizam. Por

fim, o modelo é treinado parcialmente com X_treino e y_treino através do atributo

partial_fit() da biblioteca scikit learn32, o que será discutido adiante na próxima seção.

3.6 TREINO E TESTE DO MODELO DE MACHINE LEARNING

Para realizar classificação de imagens, muitos algoritmos de machine learning

podem ser utilizados. Esses algoritmos, para o caso de classificação de imagens,

são chamados de classificadores (CHUGH et al., 2020). 

Nesse  sentido,  após  testes  com  diferentes  classificadores  como

RandomForestClassifier()33 e AdaBoostClassifier()34, ambos da biblioteca scikit learn,

verificou-se que o algoritmo mais apropriado para este caso é o SGDClassifier()35,

também da biblioteca scikit learn. Isso se deve não só por ter se mostrado efetivo no

treinamento  de  modelos  linerares  (Shalev-Shwartz;  Ben-David36,  2014  apud

31 Mais informações sobre a função em: 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.

32 Mais informações sobre o atributo em: 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.
linear_model.SGDClassifier.partial_fit.

33 Mais informações sobre o classificador em: 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

34 Mais informações sobre o classificador em: 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html.

35 Mais informações sobre o classificador em: 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html.

36 SHALEV-SHWARTZ, S.,BEN-DAVID, S. Understanding machine learning: From theory to 
algorithms, Cambridge University Press, 2014.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.partial_fit
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.partial_fit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


45

CATAPANG, J. K., Optimizing Speed and Accuracy Trade-off in Machine Learning

Models  via  Stochastic  Gradient  Descent  Approximation,  2022),  mas  também por

oferecer a possibilidade de realizar treinos parciais por meio do atributo partial_fit().

Essa característica do algoritmo é ideal para o caso em questão, uma vez que a

quantidade de amostras é bastante elevada (82.944.000) e existem limitações de

hardware  (20  GB  de  RAM  e  processador  com  quatro  núcleos).  Assim,  a

possibilidade de treinamentos parciais foi decisiva na escolha deste algoritmo, uma

vez que devido à quantidade de amostras, quando treinadas em uma única vez com

os outros classificadores, havia sobrecarga de RAM, e o código era encerrado antes

do fim.

3.6.1 Algoritmo Stochastic Gradient Descent (SGD)

De acordo com a página da biblioteca scikit learn (2023),

[O  algoritmo  SGD]  implementa  modelos  lineares  regularizados  com
aprendizado  de  descida  gradiente  estocástica:  o  gradiente  de  perda  é
estimado a cada [iteração] e o modelo é atualizado ao longo do processo
por meio de um cronograma de força decrescente (conhecido como “taxa de
aprendizado”).

No caso deste trabalho, o modelo linear regularizado usado para treinar o

modelo de machine learning  é um SVM (Support Vector Machine). Um SVM é um

algoritmo  supervisionado  de  ML que  implementa  fronteiras  de  decisão  (ou  um

hiperplano multidimensional) de modo a designar dados com n dimensões (neste

caso as amostras com 57 atributos) em classes, permitindo que novos dados sejam

facilmente classificados na classe correta (SAHU; SHARMA, 2023). 

Considerando os dados de treino (X_treino) com 57 atributos cada e seus

respectivos dados de referência (y_treino),  o hiperplano neste caso deve ter  n-1

dimensões, onde n é a quantidade de atributos/características que definem os dados

de treino. Assim, o hiperplano neste caso teria 56 dimensões, algo impossível de ser

representado graficamente. Por conta disso, para facilitar a explicação, a Figura 15
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apresenta o caso de um hiperplano com uma dimensão (linha vermelha) dado um

conjunto de dados com duas dimensões (atributos), representados por X1 e  X2, do

qual os dados de referência podem ter valores +1 ou -1, indicando as classes às

quais os dados a serem treinados pertencem.

Figura 15 - Classificação de dados com dois atributos mediante o hiperplano e suas margens.

Fonte: SAHU, Chandan Kumar; SHAMAR, Maitrey. HINGE LOSS IN SUPPORT VECTOR

MACHINES, School of Computer Sciences, National Institute of Science Education and Research,

Bhubaneshwar, Homi Bhabha National Institute, 2023. Disponível em:

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf. Acesso em: 28 nov. 2023.

É possível verificar que as margens do hiperplano são definidas por outros

dois hiperplanos paralelos ao central. Os hiperplanos são definidos como segue:

HiperplanoCentral :ŵT⋅x̂−b=0

HiperplanoMargem Superior :ŵT⋅x̂−b=1

HiperplanoMagem Inferior : ŵT⋅x̂−b=−1

Das expressões matemáticas dos hiperplanos,  wT é o vetor transposta dos

pesos do classificador SVM, x é o vetor de todas as amostras e b é valor de viés do

classificador. Dessa forma, todas as amostras acima da margem superior pertencem

a  uma  classe  e,  similarmente,  todas  as  amostras  abaixo  da  margem  inferior

pertencem a outra classe. Dessa forma, a intenção do classificador é maximizar o

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf
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comprimento da margem para melhor definir as regiões de cada classe e, para evitar

que amostras encontrem-se dentro dela, estipula-se um limitador como segue:

yi( ŵ
T⋅x̂i−b)≥1

Nessa expressão, yi é o dado de referência de cada amostra, xi é o vetor de

cada amostra e o termo entre parênteses é o valor associado à previsão do modelo.

Quando  existem  dados  que  se  encontram  dentro  da  margem,  o  método

utilizado é chamado de soft-margin, que permite “sacrificar” algumas das amostras

quanto à classificações incorretas.

Dessa forma, para definir a soft-margin, utiliza-se da função de perda. Neste

caso, a função de perda é definida como  hinge, passada pelo parâmetro  loss do

SGDClassifier(). A função de perda calcula o erro entre o valor previsto para uma

classe e  o  valor  real  daquela classe para cada amostra.  Assim,  para otimizar  o

sistema, é necessário minimizar esse erro. A Figura 16 mostra a função de perda

hinge.

Figura 16 - Função de perda hinge.

 Fonte: SAHU, Chandan Kumar; SHAMAR, Maitrey. HINGE LOSS IN SUPPORT VECTOR

MACHINES, School of Computer Sciences, National Institute of Science Education and Research,

Bhubaneshwar, Homi Bhabha National Institute, 2023. Disponível em:

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf. Acesso em: 28 nov. 2023.

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf
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Ainda,  a  função  de  perda  hinge  é  representada  matematicamente  pela

expressão abaixo:

L( y)=max (0,1−y i(ŵ
T⋅x̂ i−b ))

Assim, quando a multiplicação do valor real (yi) e do valor previsto (termo

entre parênteses) é maior ou igual a um, significa que a amostra xi  foi classificada de

maneira correta e a penalidade para essa amostra é mínima ( L( y )=0 ). Por outro

lado, caso  L( y )>0 , significa que a amostra foi classificada em uma das outras

classes e que a penalidade terá valor proporcional a quão longe da classificação

correta a amostra se encontra. 

Com isso, o algoritmo de Gradiente Descendente Estocástico tenta otimizar o

processo de classificação por meio da correção do erro da função de perda nas

iterações  seguintes  com novas  amostras.  Isso  acontece  através  do  cálculo  dos

novos  pesos  a  partir  da  derivada  parcial  da  função  em  relação  aos  pesos.  As

expressões do novo peso e da derivada parcial são mostradas a seguir:

w t+1=w t−η ∂ L
∂w t

∂ L
∂w t

=∇ wL (wt ; x i; yi)

Assim,  wt+1  indica os pesos da iteração seguinte  t+1,  η é o valor da taxa de

aprendizado (learning rate), e a derivada parcial da função de perda em relação aos

pesos é o gradiente da função de perda em relação aos pesos anteriores  wt,  da

amostra  xi e de seu valor de referência  yi  (KANDEL; CASTELLI; POPOVIČ, 2020).

Além disso, a escolha da amostra xi   e sua respectiva referência yi   para corrigir os

pesos é aleatória.

Por conseguinte, a partir das correções de pesos e assim da classificação das

novas amostras, o classificador SVM consegue aumentar a margem do hiperplano e

definir com maior precisão a separação das classes.

No caso de um problema com três classes como o em questão, o algoritmo

SGD utiliza do método  one versus all  (um contra todos), de modo que para cada

classe existe um classificador SVM binário que qualifica a amostra entre pertencente
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a  essa  classe  ou  às  outras.  Por  consequência,  cada  classificador  gera  um

hiperplano  que  delimita  a  classe  considerada  verdadeira  (a  classe  de  seu

classificador)  das outras.  Assim,  durante  o  treino  de classificação,  todos os  três

classificadores  são  acionados,  e  aquele  que  tem  o  maior  grau  de  confiança

determina a qual classe pertence a amostra. 

Desse  modo,  a  cada  imagem,  todo  o  processo  de  posicionamento  dos

hiperplanos e margens, e classificação de amostras é repetido. Como já discutido,

no  caso  deste  trabalho  existem  57  atributos  por  arranjo  de  pixel.  Assim,  a

demonstração visual do hiperplano seria complexa. Por isso, abaixo há um exemplo

retirado da página da biblioteca  scikit learn  no qual são classificadas amostras de

flores entre três espécies (classes) de acordo com dois atributos: comprimento e

espessura de sépalas.

Figura 17 – Exemplo de hiperplano para classificação de imagens.

Fonte: 1.5. Stochastic Gradient Descent. scikit learn, 2023. Disponível em:
https://scikit-learn.org/stable/modules/sgd.html. Acesso em: 20 nov. 2023.

Na  Figura  17,  cada  linha  tracejada  representa  um  hiperplano  de  um

classificador  binário  do  método  “um contra  todos”,  enquanto  no  plano  de  fundo

https://scikit-learn.org/stable/modules/sgd.html
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encontram-se as regiões coloridas que representam as áreas de decisão induzidas

pelos hiperplanos.

3.6.2 Parâmetros do Algoritmo

O algoritmo SGD possui muitos parâmetros a serem definidos para melhorar

seu  desempenho.  Nesse  sentido,  após  testes  com  diferentes  valores,  os  mais

adequados são os apresentados em seguida.

• loss: como já discutido, a função de perda definida pelo parâmetro loss

foi escolhida como hinge.

• shuffle:   configurado  como  True,  esse  parâmetro  garante  que  as

amostras de treino sejam embaralhadas a cada imagem, de modo que

diferentes  índices relativos  às  amostras  estejam no grupo de treino

seguinte.

• random_state:  também  já  discutido,  garante  a  reprodutibilidade  dos

resultados todas as vezes em que o código é executado.

• warm_start:  configurado  como  True,  reutiliza  a  solução  do  último

partial_fit como inicialização para o próximo.

• learning_rate:  configurado  como  adaptive,  mantém  a  taxa  de

aprendizado inicial constante, desde que a perda continue a diminuir.

• eta0: definido como 0.01, indica a taxa de aprendizado inicial.

• class_weight:  definido  como  balanced,  retorna  o  peso  associado  a

cada  classe,  de  modo  a  ajustá-los  inversamente  proporcional  à

frequência  das classes nos dados de  referência.  Esse parâmetro  é

redefinido a cada imagem, contribuindo com o cálculo dos novos pesos

dos classificadores SVM.

• average: definido como True, computa a média dos pesos de descida

de gradiente estocástica ao longo de todas as atualizações de peso, e

armazena o resultado. 
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3.6.3 Treino do Modelo

Definido o classificador e o algoritmo SGD, o modelo deve ser treinado. Como

exposto  anteriormente,  o  treinamento  é  feito  em  partes  através  do  atributo

partial_fit(). Este recebe como parâmetros os dados de treino de X e y (X_treino e

y_treino), além das três classes (29 – azul - VRA, 76 – vermelho - SV, 150 – verde -

VF). 

O processo de treinamento se repete até que todas as fotos tenham sido

analisadas.

3.6.4 Teste do Modelo

Após cada ciclo de treinamento, é obtida a exatidão do modelo através do

atributo  score()37,  que  analisa  todas  as  amostras  de  teste  (X_teste  e  y_teste)

reunidas até o momento. Além disso, a precisão, o recall e o F1-Score também são

obtidos,  mas  através  da  função  classification_report()38.  Ao  fim  de  todas  as

classificações,  a  matriz  de  confusão  é  devolvida  através  da  função

confusion_matrix39.

Em seguida, são apresentados os conceitos de matriz de confusão, exatidão,

precisão, recall e F1-Score.

37 Mais informações sobre o atributo em: 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.
linear_model.SGDClassifier.score.

38 Mais informações sobre a função em: 
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html.

39 Mais informações sobre a função em: 
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.score
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.score
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3.6.4.1 Matriz de Confusão

A matriz de confusão é um método bastante utilizado para avaliar problemas

de  classificação  de  imagem  (KULKARNI;  CHONG;  BATARSEH,  2020).  Ela

representa  a  contagem de  valores  previstos  e  reais.  Através  dela,  consegue-se

calcular a exatidão, precisão, recall e F1-Score.

Considerando um problema de três classes como o em questão, a matriz será

de tamanho 3x3. A seguir, são ilustradas a mesma matriz de confusão, porém em

três imagens e configurações diferentes, de modo a facilitar  a apresentação dos

cálculos para cada classe.

Figura 18 – Matriz de confusão considerando cada uma das três classes.
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Fonte: Compilação do autor.

Das figuras apresentadas, TP significa True Positive e indica a quantidade de

amostras previstas como dentro da classe e que de fato pertencem a ela. Por outro

lado,  FP,  que  significa  False  Positive,  indica  as  amostras  previstas  como

pertencentes a determinada classe, mas que na verdade não são. Além disso,  FN

(False Negative) indica as amostras que não foram classificadas em uma classe

específica, mas que na verdade pertencem a ela. Por fim, TN, True Negative, indica

as amostras que não foram classificadas em uma classe específica e que de fato

não pertencem a ela. As classes 1, 2 e 3 representam, respectivamente,  VF, VRA e

SV (Vegetação de Floresta, Vegetação Rasteira e Arbustos, e Sem Vegetação, como

já apresentado).

3.6.4.2 Exatidão

Exatidão é uma métrica utilizada para avaliar  modelos de classificação de

imagem. Ela define a porcentagem de amostras previstas com exatidão em relação

a  todas  as  previsões  (GOOGLE  MACHINE  LEARNING,  2023).  A  exatidão  é

calculada para todas as classes, de modo a classificar o modelo como um todo. A

seguir apresenta-se a fórmula para calculá-la.

Acurácia=
[(TPVF+TPVRA+TP SV)+(TNVF+TNVRA+TN SV )]

[(TPVF+TPVRA+TPSV )+(TNVF+TN VRA+TN SV)+(FPVF+FPVRA+FPSV)+(FN VF+FNVRA+FNSV )]
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3.6.4.3 Precisão

De acordo com Kulkarni,  Chong e Batarseh (2020),  precisão evidencia  “o

quão exato é o modelo quanto a predizer valores positivos”. Assim, precisão pode

ser entendida como a exatidão das previsões tidas como positivas (Bruce, P.; Bruce,

A40,  2017  apud  KULKARNI,  Ajay;  CHONG,  Deri;  BATARSEH,  Feras  A.  Data

Democracy,  At  the  Nexus  of  Artificial  Intelligence,  Software  Development,  and

Knowledge Engineering, 2020). Desse modo, precisão é expressa como segue.

Precisão=
(TPVF+TPVRA+TP SV)

[(TPVF+TPVRA+TPSV)+(FPVF+FPVRA+FPSV )]

3.6.4.4 Recall

Recall mede  a  força  de  um  modelo  prever  resultados  positivos,  sendo

conhecido  como  a  sensibilidade  do  modelo  (KULKARNI;  CHONG;  BATARSEH,

2020).  Em outras  palavras,  recall  indica  a  proporção  de  previsões  positivas  em

relação  a  todos  os  resultados  realmente  positivos.  A expressão  a  seguir  define

matematicamente recall.

Recall=
(TPVF+TPVRA+TP SV)

[(TPVF+TPVRA+TPSV )+(FNVF+FN VRA+FN SV)]

3.6.4.5 F1-Score

F1-Score é outra medida para avaliar um modelo de classificação de imagem.

Nesse caso, ele reúne a precisão e o recall balanceados em uma média harmônica.

Assim, para a classificação de valores positivos, contribui para entender o equilíbrio

40 BRUCE, P., BRUCE, A. Practical Statisctics for Data Scientists: 50 Essential Concepts, O'Reilly 
Media, 2017.
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entre  correção  e  cobertura  de  amostras  do  modelo  (Alberto  et  al.41,  2018  apud

KULKARNI,  Ajay;  CHONG,  Deri;  BATARSEH,  Feras  A.  Data  Democracy,  At  the

Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering,

2020). 

A medida pode ser expressa da seguinte forma, de modo que β seja igual a

um.

F β=(1+ β ²) Precisão⋅Recall
(β ²⋅Precisão )+Recall

⇒F1=2
Precisão⋅Recall
Precisão+Recall

41 ALBERTO, F. et al. Learning from Imbalanced Data Sets, Springer, 2018.
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4 RESULTADOS

A  seguir,  são  mostrados  os  resultados  da  performance  do  modelo  de

classificação de imagem discutido nas seções anteriores. Além disso, cada um deles

será discutido nesta mesma seção.

4.1 EXECUÇÃO DO CÓDIGO

Embora o número de fotos a serem utilizadas para treinar o modelo era de

160, devido a problemas de capacidade do hardware foi necessário reduzi-lo. Assim,

o novo número de fotos treinadas foi 120, tendo, portanto, 62.208.000 pixeis como

amostras (49.766.400 para o treino e 12.441.600 para o teste do modelo).

Ainda, foi necessário utilizar outro computador com mais capacidade que o

anterior (20 GB de RAM; quatro núcleos no processador), tendo o novo 32 GB de

RAM e doze núcleos no processador. No entanto, a quantidade de RAM ainda era

insuficiente  para  as  160  fotos,  o  que  levou  à  redução  a  120  imagens,  como

discutido, uma vez que a performance do computador atingia seu máximo e o código

colapsava. 

Após  a  redução,  o  código  conseguiu  ser  concluído,  e  os  resultados  de

performance do modelo, assim como ele próprio, obtidos. O código completo para

gerar o modelo e seus resultados encontra-se no Apêndice A.

4.2 MATRIZ DE CONFUSÃO DO MODELO

A matriz  de  confusão  expõe  a  quantidade  de  amostras  classificadas  de

acordo com a previsão do modelo e também com a classificação real. A partir dela, é

possível  obter  indicadores  como  exatidão,  precisão,  recall e  o  F1-Score,  como
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explicado anteriormente. A seguir, a matriz de confusão após todo o treinamento do

modelo é apresentada.

Figura 19 - Matriz de confusão do modelo.

Fonte: Compilação do autor.

A partir da Figura 19 e do exposto na seção 3.6.4.1, é possível verificar que

Vegetação de Floresta (VF) teve a maior proporção de acertos quanto aos valores

reais (79%). Por outro lado, Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação

(SV) tiveram previsões corretas baixas (65% e 35%, respectivamente). 

Além  disso,  quanto  à  SV,  a  maior  parte  das  previsões  indicaram

incorretamente a classe VF, e parte considerável em VRA. Isso pode ter acontecido

devido a grande abrangência de intensidades de cor e brilho dos pixeis que de fato

pertencem a essa classe. Um bom exemplo é a diferença entre uma estrada de terra

(comum nas fotos), com intensidade de brilho alta, e a sombra de uma edificação.

Nesse sentido, como as florestas tendem a ser escuras, a sombra seria classificada

como VF e não SV.
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 Ainda, boa parte das previsões de VRA que na verdade eram VF (20%) e de

VF que eram na verdade VRA (27%) foram classificadas incorretamente. Isso pode

ter acontecido pela semelhança de intensidade e brilho das duas classes, uma vez

que a grama, se estiver mais escura na foto, pode ser classificada como VF, e se a

floresta estiver mais clara, pode ser confundida com VRA.

4.3 EXATIDÃO DO MODELO

Como  discutido  na  seção  3.6.4.2,  a  exatidão  evidencia  a  quantidade  de

previsões  corretas  em  relação  a  todas  realizadas.  Em  seguida,  apresenta-se  o

gráfico da Figura 20, que mostra os valores de exatidão a cada iteração de treino do

modelo, com o acumulado dos dados de teste até o momento, relativo à quantidade

de fotos utilizadas até então.

Figura 20 - Exatidão x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.
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Como  é  possível  perceber,  de  forma  geral,  a  exatidão  com até  35  fotos

permanece acima de 70%, com uma queda contínua até 40 imagens, atingindo algo

entre 70% e 67%. Esse comportamento pode ter sido provocado pela sequência

dessas cinco imagens que contêm ou apenas uma classe, ou duas. Além disso, nas

imagens com duas classes, existem regiões de floresta e rio e, como a coloração do

rio é escura, é possível que o modelo tenha confundido com a coloração da floresta.

A Figura 21 apresenta uma dessas cinco fotos e sua classificação diante do modelo.

Figura 21 – Rio e floresta são confundidos na versão classificada pelo modelo.

Fonte: Google Earth (2023); Compilação do autor.

Ademais,  esse comportamento de queda também acontece entre 73 e 96

imagens, intervalo com muitas fotos com apenas uma ou duas classes. A Figura 22

mostra um exemplo com apenas uma classe a ser definida (Vegetação de Floresta)

e que possui pixeis de outras classes.



61

Figura 22 – Imagem com apenas floresta sendo classificada pelo modelo com outras classes.

Fonte: Google Earth (2023); Compilação do autor.

Assim, é possível  inferir  que o modelo não seja tão exato na previsão de

imagens que contenham menos de três classes, além de ser bastante sensível à

intensidade das cores presentes nas imagens originais, como visto no exemplo de

foto da Figura 21. Desse modo, a exatidão média final convergiu para 66,62%, valor

que  não  infere  tanta  confiança  no  modelo,  mas  que  indica  que  a  classificação

correta ocorre para a maior parte dos pixeis de uma imagem. 

4.4 PRECISÃO DO MODELO

Em resumo, a precisão indica a proporção de previsões positivas corretas

para uma classe em relação a todas as previsões positivas, corretas e incorretas. A

Figura 23 mostra as curvas de precisão para cada uma das três classes, além da

previsão média de todas elas em conjunto.



62

Figura 23 - Precisão x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

A partir do gráfico, é possível perceber que apesar do início, VF e VRA se

mantiveram praticamente constantes, com amplitude baixa, e terminaram próximas

de 70%. Isso indica que das previsões positivas para essas classes em relação a

todas  as  previsões  positivas  para  as  mesmas  classes,  ainda  que  incorretas,  o

modelo  teve  boa  performance.  No entanto,  a  curva  de  SV teve  comportamento

bastante  oscilatório,  com  alta  amplitude.  Embora  tenha  alcançado  um  patamar

próximo de 68% entre 95 e 110 fotos, terminou em um patamar muito mais baixo.

Isso pode ter acontecido devido à presença de fotos a partir da 110ª com claridade

acima  do  comum,  possivelmente  devido  a  uma  nuvem ou  até  mesmo  falha  do

equipamento que fotografou as imagens. Abaixo existem dois exemplos de fotos de

floresta usados no treinamento com claridades diferentes. 
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Figura 24 - Exemplo de imagens diferentes de floresta, com claridades diferentes.

  

Fonte: Google Earth (2023).

Por fim, devido à queda da curva de SV, a precisão média também sofreu o

impacto, terminando em 64%. 

4.5 RECALL DO MODELO

O  recall,  como já definido, representa a proporção das previsões positivas

para  uma  classe  em  relação  a  todas  classificações  verdadeiras  para  a  mesma

classe. A Figura 25 mostra os valores de  recall  para cada classe, assim como a

média de todas elas.
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Figura 25 - Recall x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

Pode-se visualizar  que a curva de VF teve comportamento inverso da de

VRA: enquanto a primeira subiu, alcançando um patamar próximo dos 80%, a outra

caiu  de  80%  até  66%.  É  possível  que  esse  comportamento  tenha  ficado  em

evidência devido a semelhança nas tonalidades das duas classes, como já discutido.

Além disso, a classe SV teve comportamento bastante inferior ao esperado:

desde o início teve queda quase que constante até convergir para algo próximo de

35%. Assim, comprova-se que a previsão para essa classe teve muitas falhas, como

exposto na seção 4.2, quando dito que as classes VF e VRA obtiveram grande parte

das previsões que deveriam ter sido alocadas em SV. O motivo para tal pode ter sido

a grande variedade de intensidade dos pixeis pertencentes a essa classe, como já

relatado.

 Ademais,  o  recall médio  manteve-se  praticamente  constante  apesar  da

grande queda da curva SV. Isso se deve à compensação tanto de VF quanto de

VRA.
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4.6 F1-SCORE DO MODELO

O  F1-Score  indica  a média  harmônica  entre  a previsão e  o  recall.  Nesse

sentido, pode-se entender melhor o balanço dessas duas medidas, equilibradas. A

Figura 26 mostra o gráfico de F1-Score para cada uma das classes e a média entre

elas. 

Figura 26 - F1-Score x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

É possível perceber que todas as quatro curvas possuem amplitudes mais

amenas, permanecendo de certa maneira constantes. Além disso, como esperado, a

curva de SV permaneceu abaixo de 50%. Por outro lado, as curvas de VF e VRA

tiveram  comportamento  mais  equilibrado  e  acima  de  70%.  O  F1-Score médio

convergiu em 61%.
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5 APLICAÇÃO

Após  o  treino  e  a  obtenção  dos  resultados  do  modelo,  ocorre  sua

implementação em um hardware embarcado. Um hardware embarcado consiste em

um conjunto de componentes computacionais e eletrônicos integrados em um chip,

como  memórias,  GPU,  CODECs  e  interfaces  de  conectividade,  interconectados

através de barramentos com alta taxa de transferência, formando um  System-on-

Chip – SoC (BARTÍK; PICHLOVÁ; KUBÁTOVÁ, 2016), associado a uma placa base.

A placa base é responsável por receber o SoC como seu controlador, de modo a

oferecer os receptores de entrada e saída (E/S) dos periféricos, como conectores de

cabo  de  rede,  USB,  áudio,  microfone,  além  dos  GPIOs  (General-Purpose

Input/Output –  Entradas/Saídas de Uso Geral) para uso de diversos protocolos de

comunicação, como CAN, I2S, PWM e mais.

Assim,  para  que  o  usuário  final  utilize  o  hardware  embarcado  com  mais

facilidade, implementando uma aplicação em seu módulo (SoC), é necessário um

software embarcado. O software embarcado nada mais é que o sistema operacional

do hardware embarcado, de modo a servir de intermediário na comunicação entre os

componentes do hardware e a aplicação do usuário final. Dessa forma, o usuário

não  precisa  se  preocupar  com  conceitos  de  programação  de  baixo  nível  para

conseguir se comunicar diretamente com o hardware.

Com isso, quando há um hardware embarcado com um software embarcado

associado, tem-se um sistema embarcado. Nesse sentido, o modelo de ML criado é

implementado em um sistema embarcado, como mostrado nas seções a seguir.

5.1 VISÃO GERAL DO SISTEMA EMBARCADO UTILIZADO

O hardware utilizado foi um SoC Apalis iMX8 Quad Max, com 4 GB de RAM,

com  disponibilidade  de  Wi-Fi  e  Bluetooth  e  operacionalidade  em  temperatura

industrial, versão V1.1 C. Associado a ele, uma placa base Ixora, versão V1.1 A,
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com diversas E/S para periféricos. Ambos os componentes foram produzidos pela

empresa Toradex.

5.1.1 Apalis iMX8QM

De acordo com a página da Toradex (2023-a), o módulo Apalis iMX8 Quad

Max possui dois núcleos Arm Cortex A-72, além de quatro núcleos Arm Cortex A-53.

Ademais, possui dois núcleos de microcontroladores Arm Cortex M4F com FPU. O

módulo possui alta performance para aplicações de visão computacional devido a

sua dual GPU GC7000. Ainda, possui memória flash de 32 GB eMMC, além dos já

mencionados 4 GB de RAM LPDDR4 (64 Bit). A Figura 27 ilustra o módulo Apalis

iMX8QM.

Figura 27 - Módulo Apalis iMX8QM 4GB WB IT.

Fonte: Toradex (2023-a). Disponível em: https://www.toradex.com/pt-br/computer-on-modules/apalis-

arm-family/nxp-imx-8. Acesso em: 29 nov.2023.

https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8
https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8
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5.1.2 Placa base Ixora

A placa  base  Ixora  tem  fator  de  forma  pequeno  e  otimizado,  possuindo

suporte para diversas interfaces industriais  (TORADEX, 2023-b).  Seu tamanho é

ideal para projetos em que o espaço é limitado, como o acoplamento em um drone.

Além disso, a placa suporta interfaces de alta velocidade e multimídias. Abaixo na

Figura 28 há uma foto da placa base Ixora.

Figura 28 - Placa base Ixora.

Fonte: Toradex (2023-b). Disponível em: https://www.toradex.com/pt-br/products/carrier-board/ixora-

carrier-board. Acesso em: 30 nov. 2023.

5.1.3 Torizon OS

Segundo a página da Toradex (2023-c), Torizon OS é:

[…] uma imagem mínima de Linux embarcado que apresenta, dentre outros
serviços  essenciais,  processamento  em  contêiner  e  componentes  para
atualizações offline seguras e remotas (Over-the-air – OTA).

https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board
https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board
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Nesse  sentido,  Torizon  OS  é  o  software  embarcado,  sendo  o  sistema

operacional do hardware embarcado. Assim, havendo a integração com contêineres,

o processo de produção de aplicações torna-se mais simples.

5.2 CONTEINERIZAÇÃO DA APLICAÇÃO

Uma das  plataformas  mais  comuns  de  se  trabalhar  com contêineres  é  o

Docker. De acordo com sua página (DOCKER, 2023), um contêiner é:

[...]  uma unidade padrão de software que empacota o código e todas as
suas  dependências,  de  modo  que  a  aplicação  seja  executada  rapida  e
seguramente  de  um  ambiente  computacional  para  outro.  Uma  imagem
contêiner Docker é um pacote de software leve, autônomo e executável que
inclui  todo  o  necessário  para  executar  uma  aplicação:  código,
processamento,  ferramentas  do  sistema,  bibliotecas  do  sistema  e
configurações.

Assim, contêineres permitem criar o ambiente necessário para uma aplicação

sem interferir  diretamente no sistema operacional,  como por  exemplo,  instalando

bibliotecas diretamente nele. Com isso, utilizar contêineres se torna propício no caso

deste trabalho, uma vez que a aplicação requer diversas configurações que não

existem no sistema operacional  base,  como as bibliotecas necessárias para sua

execução. Além disso, o uso de um contêiner também se faz útil a partir do momento

em que é necessário converter a aplicação de uma arquitetura para outra (neste

caso,  da  arquitetura  x86  64  bit  –  arquitetura  do  computador  -  para  arm64  –

arquitetura do módulo embarcado). Abaixo há uma representação da estrutura geral

do  sistema  embarcado  utilizando  contêiner,  onde  Infrastructure  corresponde  ao

hardware  embarcado  (módulo)  e  Host  operating  system ao  sistema  operacional

(Torizon OS).
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Figura 29 - Estrutura geral de um sistema embarcado utilizando um contêiner Docker.

Fonte: Docker, 2023. Disponível em: https://www.docker.com/resources/what-container/. Acesso em:

30 nov. 2023.

Para criar  um contêiner para a aplicação,  é necessário utilizar um arquivo

Dockerfile. Nele, existem todas as configurações necessárias para o funcionamento

da aplicação, desde a instalação das ferramentas da linguagem de programação

utilizada, de bibliotecas específicas para a aplicação, até o compilador cruzado para

converter a aplicação de uma arquitetura para outra.

Tendo o  Dockerfile, é necessário executar o comando de  build  e logo  push

para  fazer  o  upload  do  contêiner  no  DockerHub.  A  seguir  são  mostrados  os

comandos executados em um terminal de um computador com Ubuntu 22.04.

cd <pasta_com_Dockerfile_e_aplicação>
docker build -t <login_DockerHub>/<nome_do_contêiner>:<tag_de_versão> .

docker login <login_DockerHub>

docker push <login_DockerHub>/<nome_do_contêiner>:<tag_de_versão> 

https://www.docker.com/resources/what-container/


72

5.3 RESULTADO DA APLICAÇÃO

Além do contêiner da aplicação, para evidenciar o resultado de forma visual,

foi executado outro contêiner para receber a interface gráfica. Trata-se do Weston,

que utiliza o protocolo Wayland42. Assim, foi utilizado um contêiner fornecido pela

Toradex43. 

Com isso,  para executar  ambos os  contêineres,  deve-se utilizar  o  arquivo

docker-compose. Portanto, é necessário copiar o arquivo para o módulo e depois,

acessando seu terminal, executá-lo, como segue.

#No terminal do computador
cd <pasta_com_docker-compose>

scp docker-compose.yml torizon@<IP_do_módulo>:<pasta_de_destino>

#No terminal do módulo
docker-compose -f docker-compose.yml up

Assim, inserindo na aplicação uma interface gráfica através das ferramentas

visuais  do  Qt44,  foi  possível  mostrar  a  foto  original  ao  lado  de  sua  imagem

classificada, como a seguir. A aplicação é visualizada através de um visualizador

VNC (Virtual Networking Computing).

42 Para mais informações, acesse: 
https://developer.toradex.com/torizon/provided-containers/working-with-weston-on-torizoncore/.

43 Mais informações sobre os contêineres disponíveis em: 
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-
containers.

44 Mais informações sobre o Qt com Python em: https://doc.qt.io/qtforpython-6/.

https://doc.qt.io/qtforpython-6/
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-containers
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-containers
https://developer.toradex.com/torizon/provided-containers/working-with-weston-on-torizoncore/
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Figura 30 - Resultado visual da aplicação de classificação de imagem.

Fonte: Compilação do autor.

É  importante  mencionar  que  para  executar  a  reprodução  visual  em  um

visualizador VNC pelo computador, foi necessário também conectar uma tela através

do conector HDMI da placa base Ixora.

Vale lembrar que todos os códigos e arquivos utilizados para compor este

trabalho  estão  disponíveis  no  GitHub  a  seguir  para  que  os  resultados  obtidos

possam ser reproduzidos: https://github.com/PauloTavernaro/classificacao-imagens.

https://github.com/PauloTavernaro/classificacao-imagens
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6 CONCLUSÃO

O propósito deste trabalho foi fornecer uma abordagem de classificação de

imagem  por  meio  de  segmentação  de  fotos  da  região  amazônica,  mais

especificamente da cidade de São Félix do Xingu-PA. Nesse sentido, o objetivo era

evidenciar  elementos  dessas  fotos  de  acordo  com  três  classes:  Vegetação  de

Floresta (VF), Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação (SV). Assim,

através de uma análise temporal da mesma área geográfica, seria possível constatar

alterações do ambiente, sugerindo, por exemplo, a presença de desmatamento em

regiões de floresta, auxiliando o poder público e autoridades competentes na busca

de soluções para o problema. 

Como visto a partir da seção de resultados, a performance geral do modelo

de machine learning para classificação das imagens não foi tão interessante. Com

uma exatidão de 66,62%, não há garantia de que grande parte das fotos a serem

analisadas  pelo  modelo  sejam  representadas  com  precisão  suficiente  para

determinar as fronteiras de cada uma das classes em cada imagem. As Figuras 31 e

32  ilustram  o  comportamento  do  modelo  frente  a  fotos  não  treinadas  (portanto

desconhecidas para ele) em relação a sua versão original. Enquanto a Figura 31

apresenta  uma  boa  detecção,  a  Figura  32  evidencia  que  para  determinadas

intensidades de brilho e cor, além de texturas, o modelo apresenta falhas.

Figura 31 – Exemplo de uma boa detecção de classes pelo modelo.

Fonte: Google Earth (2023); Compilação do autor.
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Figura 32 – Exemplo de uma detecção falha pelo modelo (rio confundido com floresta).

Fonte: Google Earth (2023); Compilação do autor.

Nesse sentido, é possível que esse comportamento tenha acontecido devido

a dois fatores. O primeiro diz respeito à conversão das imagens originais da escala

RGB  para  a  escala  de  cinza.  Nesse  processo,  três  canais  de  cores  foram

redimensionados  em apenas  um,  o  que  pode  ter  diminuído  significantemente  a

quantidade de informações de cada pixel  a cada filtro.  O segundo fator leva em

consideração à estratégia adotada para a análise das imagens. Em vez de analisá-

las por inteiro, o processo de classificação considerou cada pixel individualmente,

fora do contexto da foto,  além de redefinir  o hiperplano e suas margens a cada

iteração a partir de apenas um pixel dos 414.720 (parcela de treino de cada imagem)

em vez de, por exemplo, considerar cada amostra como uma imagem em si.

Outro ponto a ser considerado é a qualidade das fotos obtidas para treinar o

modelo. Como discutido, as fotos obtidas do Google Earth tinham distância do solo

de 600 m, além de terem qualidade insuficiente para a análise deste trabalho, pois

com baixa  resolução,  a  dificuldade  em definir  regiões  de  fronteira  em uma foto

aumenta. Assim, uma possibilidade seria registrar as fotos a partir de uma câmera

hiperespectral  acoplada  em um  drone,  cuja  capacidade  de  captura  compreende

dezenas  de  bandas  do  espectro  eletromagnético,  fornecendo  muito  mais

informações  do  que  as  imagens  em  RGB  devido  à  alta  resolução  espectral

(PERERA;  PREMACHANDRA;  KAWANAKA,  2023).  Dessa  forma,  observando  o

grau de refletância do ambiente analisado a uma distância menor do solo, é possível

distinguir cada um dos componentes de uma imagem em uma determinada banda

do  espectro  eletromagnético.  Com  isso,  problemas  enfrentados  quanto  à

semelhança de intensidades de brilho (como no caso de sombra de construções,
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intensidade de brilho de florestas e de rios) poderiam ser resolvidos. A Figura 32

mostra um exemplo da diferença espectral na análise do solo e de plantações de

batata, chá e repolho para diferentes bandas. É evidente a diferença desses quatro

elementos entre as bandas de 738 e 834 nm.

Figura 33 - Composição espectral de imagens de solo e plantações de batata, chá e repolho.

Fonte:  Compilação do autor45 .

Por outro lado, apesar da performance do modelo não ter atingido o nível de

excelência  esperado,  foi  possível  implementá-lo  com  sucesso  no  módulo

embarcado. Assim, a conversão de arquitetura do binário do modelo, além de toda a

estrutura de conteinerização foram executadas de maneira efetiva. 

Com isso, sendo possível aplicar o modelo em um sistema embarcado, torna-

se mais próxima a proposta de implementar o módulo embarcado com o modelo de

ML em um drone para que o processo das imagens aconteça logo após a captura

45 Imagem retirada de PERERA, C. J.; PREMACHANDRA, C.; KAWANAKA, H. Comparison of Light 
Weight Hyperspectral Camera Spectral Signatures with Field Spectral Signatures for Agricultural 
Applications, 2023, com edição.
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delas. Ainda, sendo possível implementar uma câmera hiperespectral para realizar a

captura das imagens, após o processamento delas e a análise da melhor banda

espectral, espera-se que a performance do modelo de ML seja aperfeiçoada e sua

exatidão  aumentada.  Portanto,  o  objetivo  final  de  analisar  uma  mesma  área

geográfica ao longo do tempo terá maior precisão e assim, maior veracidade dos

dados em estudo. 
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APÊNDICE A – CÓDIGO COMENTADO DA OBTENÇÃO DO MODELO
DE MACHINE LEARNING

import numpy as np
import cv2
import pandas as pd
import pickle
import os
from skimage.filters import roberts, sobel_h, sobel_v, prewitt_h, prewitt_v
from scipy import ndimage as nd
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.utils import compute_class_weight
from skimage.segmentation import chan_vese
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import classification_report

#Filtro Gabor, que resulta em 48 versões de filtro com diferentes perfis de 
intensidade e foco

def filtro_Gabor(imagem):
    df = pd.DataFrame()
    index = 1
    nucleos = []
    for theta in range(1,4):
        theta = theta / 4 * np.pi
        for sigma in (1,3):
            for lamda in np.arange(0, np.pi, np.pi/4):
                for gama in (0.05, 0.5):
                    gabor_index = 'Gabor' + str(index)
                    tamanho_nucleo = 2
                    nucleo = cv2.getGaborKernel((tamanho_nucleo,tamanho_nucleo), 
sigma, theta, lamda, gama, 0, ktype=cv2.CV_32F)
                    nucleos.append(nucleo)
                    imagem_filtrada = cv2.filter2D(imagem, cv2.CV_8UC3, nucleo)
                    imagem_redimensionada = imagem_filtrada.reshape(-1)
                    df_red = pd.DataFrame(imagem_redimensionada, columns = 
[gabor_index])
                    df = pd.concat([df, df_red], axis = 1)
                    index += 1
    return df

#Função que retorna como atributos de cada pixel o próprio valor de cada um deles

def Original(imagem):
    original_redimensionado = imagem.reshape(-1)
    df_red = pd.DataFrame(original_redimensionado, columns = ['Pixels Originais'])
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    return df_red

#Filtro Canny, detecta bordas

def Canny_Edge(imagem):
    magnitude = cv2.Canny(imagem, 100, 200)
    #Padronizando os dados entre 0 e 255
    magnitude = magnitude * 255/np.max(magnitude)
    #Arredondando os dados
    magnitude = np.round(magnitude)
    #Convertendo para inteiro
    magnitude = magnitude.astype(int)
    canny_redimensionado = magnitude.reshape(-1)
    df_red = pd.DataFrame(canny_redimensionado, columns = ['Canny Edge'])

    return df_red

#Filtro Roberts, detecta bordas

def Roberts(imagem):
    magnitude = roberts(imagem)
    #Padronizando os dados entre 0 e 255
    magnitude *= 255/np.max(magnitude)
    #Arredondando os dados
    magnitude = np.round(magnitude)
    #Convertendo para inteiro
    magnitude = magnitude.astype(int)
    roberts_redimensionado = magnitude.reshape(-1)
    df_red = pd.DataFrame(roberts_redimensionado, columns = ['Roberts'])

    return df_red

#Filtro Sobel, detecta bordas

def Sobel(imagem):
    #Calculando o gradiente Sobel para cada direção (horizontal e vertical)
    sobel_x = sobel_h(imagem)
    sobel_y = sobel_v(imagem)
    #Padronizando os dados entre 0 e 255
    magnitude = np.sqrt(sobel_x**2 + sobel_y**2)
    magnitude *= 255/np.max(magnitude)
    #Arredondando os dados
    magnitude = np.round(magnitude)
    #Convertendo para inteiro
    magnitude = magnitude.astype(int)
    sobel_redimensionado = magnitude.reshape(-1)
    df_red = pd.DataFrame(sobel_redimensionado, columns = ['Sobel'])
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    return df_red

#Filtro Prewitt, detecta bordas

def Prewitt(imagem):
    #Calculando o gradiente Prewitt para cada direção (horizontal e vertical)
    prewitt_x = prewitt_h(imagem)
    prewitt_y = prewitt_v(imagem)
    #Padronizando os dados entre 0 e 255
    magnitude = np.sqrt(prewitt_x**2 + prewitt_y**2)
    magnitude *= 255/np.max(magnitude)
    #Arredondando os dados
    magnitude = np.round(magnitude)
    #Convertendo para inteiro
    magnitude = magnitude.astype(int)
    prewitt_redimensionado = magnitude.reshape(-1)
    df_red = pd.DataFrame(prewitt_redimensionado, columns = ['Prewitt'])

    return df_red

#Filtro Gaussiano, aplica desfoque nas imagens

def Gaussiana(imagem, sigma):
    imagem_gaussiana = nd.gaussian_filter(imagem, sigma=sigma)
    gaussiana_redimensionada = imagem_gaussiana.reshape(-1)
    df_red = pd.DataFrame(gaussiana_redimensionada, columns = 
[f'Gaussiana_s{sigma}'])

    return df_red

#Filtro Mediana, reduz ruído

def Mediana(imagem):
    imagem_mediana = nd.median_filter(imagem, size=3)
    mediana_redimensionada = imagem_mediana.reshape(-1)
    df_red = pd.DataFrame(mediana_redimensionada, columns = ['Mediana'])

    return df_red

#Filtro Chan-Vese, detecta regiões da imagem

def Chan_Vese(imagem):
    imagem_chan_vese = chan_vese(imagem, mu=0.25, lambda1=1, lambda2=1, 
tol=1e-3, max_num_iter=200, dt=0.5, init_level_set="checkerboard", 
extended_output=True)
    array_chan_vese = np.array(imagem_chan_vese[1])
    #Normalizando os dados
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    array_chan_vese *= 255/np.max(array_chan_vese)
    #Arredondando os dados
    array_chan_vese = np.round(array_chan_vese)
    #Convertendo para inteiro
    array_chan_vese = array_chan_vese.astype(int)
    chan_vese_redimensionada = array_chan_vese.reshape(-1)
    df_red = pd.DataFrame(chan_vese_redimensionada, columns = ['Chan_Vese'])

    return df_red

#Função que aplica os filtros a cada imagem, e organiza seus pixeis em um 
dataframe de dimensão
#518.400 (arranjos de pixeis) por 56 (quantidade de atributos de cada arranjo), que 
será anexado
#em um dicionário cuja chave é sua imagem

def definir_filtros(caminho_imagens):
    #Definindo o dicionário que terá todos os dataframes de cada imagem 
    dict_features = {}

    i = 1

    for imagem_treino in sorted(os.listdir(caminho_imagens)):

        #Definindo o dataframe final de cada imagem
        dados_todos_filtros = pd.DataFrame()
        #Garantindo que os dataframes parciais de cada filtro sejam reiniciados a cada
loop
        df_gabors = pd.DataFrame()
        df_original = pd.DataFrame()
        df_canny = pd.DataFrame()
        df_roberts = pd.DataFrame()
        df_sobel = pd.DataFrame()
        df_prewitt = pd.DataFrame()
        df_gaussiana_s3 = pd.DataFrame()
        df_gaussiana_s7 = pd.DataFrame()
        df_mediana = pd.DataFrame()
        df_chan_vese = pd.DataFrame()

        #Lendo a imagem 
        imagem = cv2.imread(caminho_imagens + imagem_treino)

        #Garantindo que tenha o tamanho de 960x540 px
        imagem = cv2.resize(imagem, (960, 540))

        #Como a biblioteca OpenCV lê as imagens na escala BGR, elas são 
primeiramente convertidas
        #em RGB, e depois em escala de cinza
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        imagem_RGB = cv2.cvtColor(imagem, cv2.COLOR_BGR2RGB)
        imagem_tons_cinza = cv2.cvtColor(imagem_RGB, cv2.COLOR_RGB2GRAY)

        #Aplicando os filtros para cada imagem
        df_gabors = filtro_Gabor(imagem_tons_cinza)
        df_original = Original(imagem_tons_cinza)
        df_canny = Canny_Edge(imagem_tons_cinza)
        df_roberts = Roberts(imagem_tons_cinza)
        df_sobel = Sobel(imagem_tons_cinza)
        df_prewitt = Prewitt(imagem_tons_cinza)
        df_gaussiana_s3 = Gaussiana(imagem_tons_cinza, 3)
        df_gaussiana_s7 = Gaussiana(imagem_tons_cinza, 7)
        df_mediana = Mediana(imagem_tons_cinza)
        df_chan_vese = Chan_Vese(imagem_tons_cinza)

        #Reunindo todos os dataframes de cada filtro um outro dataframe com todos 
os atributos
        #de cada filtro alinhados horizontalmente
        dados_todos_filtros = pd.concat([df_gabors, df_original, df_canny, df_roberts, 
df_sobel, df_prewitt, df_gaussiana_s3, df_gaussiana_s7, df_mediana, 
df_chan_vese], axis=1)

        #Preenchendo o dicionário com o dataframe anterior e sua respectiva imagem
        dict_features.update({f'Imagem_{i}' : dados_todos_filtros})

        i += 1

    return dict_features

#Função que recebe cada imagem de referência e organiza seus pixeis em um 
dataframe de dimensão
#518.400 (pixeis) por 1 (atributo de classificação), que será anexado em um 
dicionário cuja 
#chave é sua imagem

def definir_referencia(caminho_imagens):
    #Definindo o dicionário que terá todos os dataframes de cada imagem
    dict_ref = {}

    j = 1

    for imagem_referencia in sorted(os.listdir(caminho_imagens)):

        #Garantindo que o dataframe final de cada imagem seja reiniciado a cada loop
        dados_categorizadas = pd.DataFrame()

        #Lendo a imagem 
        imagem = cv2.imread(caminho_imagens + imagem_referencia)
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        #Garantindo que tenha o tamanho de 960x540 px
        imagem = cv2.resize(imagem, (960, 540))

        #Como a biblioteca OpenCV lê as imagens na escala BGR, elas são 
primeiramente convertidas
        #em RGB, e depois em escala de cinza, ainda que as imagens de referência já
estejam na 
        #escala de cinza
        imagem_RGB = cv2.cvtColor(imagem, cv2.COLOR_BGR2RGB)
        imagem_tons_cinza = cv2.cvtColor(imagem_RGB, cv2.COLOR_RGB2GRAY)

        #Redimensionando cada imagem para ter apenas uma dimensão
        dados_imagem_ref = imagem_tons_cinza.reshape(-1)

        #Organizando os dados de cada imagem em um dataframe
        dados_categorizadas = pd.DataFrame(dados_imagem_ref, columns = 
['Imagens de Referência'])

        #Preenchendo o dicionário com o dataframe anterior e sua respectiva imagem
        dict_ref.update({f'Imagem_Ref_{j}':dados_categorizadas})

        j += 1
    
    return dict_ref

#Função que divide cada dataframe de X e y em grupos de treino e teste para que 
então o modelo seja
#treinado em etapas, ou seja, a partir dos dados de cada imagem para economizar 
armazenamento de RAM

def divisao_treino_teste(X, y, model, i, todos_X_teste, todos_y_teste):

    #Divide os valores de X e y em grupos de treino e teste. A parcela de teste é de 
20%
    #Além disso, "random_state" garante a reprodutibilidade 
    X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2, 
random_state=1)

    #Convertendo o dataframe em arranjos NumPy
    X_treino = X_treino.to_numpy()
    y_treino = y_treino.to_numpy().ravel()

    #Treinando o modelo em partes (dados de uma imagem por vez)
    #As classes correspondem às classificações:
    #29: Vegetação Rasteira e Arbustos
    #76: Sem Vegetação
    #150: Vegetação de Floresta
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    model.partial_fit(X_treino, y_treino, classes=[29, 76, 150])

    #Convertendo o dataframe em arranjos NumPy
    X_teste = X_teste.to_numpy()
    y_teste = y_teste.to_numpy().ravel()

    #Concatenando todos os dados de teste de todas as fotos até o momento
    #para que o modelo resultante de todas as iterações até então avalie todas
    #as informações de teste até o momento
    if i == 1:
        todos_y_teste = y_teste
        todos_X_teste = X_teste
    else:
        todos_y_teste = np.append(todos_y_teste, y_teste)
        todos_X_teste = np.append(todos_X_teste, X_teste, axis=0)

    #Obtendo a exatidão do modelo
    print(f"Exatidão depois da Imagem {i} = {model.score(todos_X_teste, 
todos_y_teste)}")

    #Realizando a previsão de resposta do modelo frente a todos os dados de teste 
de X até então
    previsao = model.predict(todos_X_teste)

    #Obtendo o relatório de classificação, o qual retorna valores como precisão e 
recall
    print(f"Relatório de Classificação depois da Imagem {i}: \
n{metrics.classification_report(todos_y_teste, previsao)}\n")

    return model, todos_X_teste, todos_y_teste

###################################################

#Função principal

if __name__ == "__main__":

    #Definindo dataframes para captar os dados das imagens
    todos_original = pd.DataFrame()
    todos_categorizadas = pd.DataFrame()
    todos_X_teste = pd.DataFrame()
    todos_y_teste = []
    todos_y_teste = np.array(todos_y_teste)
    
    #Definindo os caminhos para encontrar as fotos
    caminho_imagens_original = '/home/user/Área de Trabalho/Originais/'
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    caminho_imagens_categorizadas = '/home/user/Área de Trabalho/Referencia/'

    #Transformando os dados em listas para facilitar a iteração
    dados_original = list(definir_filtros(caminho_imagens_original).values())
    dados_categorizadas = 
list(definir_referencia(caminho_imagens_categorizadas).values())

    #Iteração de cada foto pelo treino e teste do modelo
    for i, (X, y) in enumerate(zip(dados_original, dados_categorizadas), 1):

        if i == 1:

            #Peso das classes sendo definidos
            peso = compute_class_weight(class_weight='balanced', 
classes=np.unique(y), y=y.to_numpy().ravel())

            modelo_inicial = lambda peso, y : SGDClassifier(loss='hinge', shuffle=True, 
random_state=1, warm_start=True, learning_rate='adaptive', eta0 = 0.01, 
class_weight=dict(zip(np.unique(y), peso)), average=True)

            modelo_pronto, todos_X_teste, todos_y_teste = divisao_treino_teste(X, y, 
modelo_inicial(peso, y), i, todos_X_teste, todos_y_teste)

        else:

            #Peso das classes sendo definidos
            peso = compute_class_weight(class_weight='balanced', 
classes=np.unique(y), y=y.to_numpy().ravel())
            
            modelo_pronto.set_params(**{'class_weight' : dict(zip(np.unique(y), peso))})

            modelo_pronto, todos_X_teste, todos_y_teste = divisao_treino_teste(X, y, 
modelo_pronto, i, todos_X_teste, todos_y_teste)

    
    #Calculando a matriz de confusão final
    previsao = modelo_pronto.predict(todos_X_teste)

    print(f'\nMatriz de Confusão: \n{metrics.confusion_matrix(todos_y_teste, previsao,
labels=[29, 76, 150])}')

    #Salvando o modelo treinado
    caminho_modelo = "/home/user/Área de Trabalho/Modelo_ML"
    pickle.dump(modelo_pronto, open(caminho_modelo, 'wb'))
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