
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE SÃO CARLOS

PAULO TAVERNARO FRALETTI

Classificação de Imagens por Segmentação: uma análise de fotos

aéreas da Floresta Amazônica através de Aprendizado de Máquina com

Python, e com implementação em um Sistema Embarcado

São Carlos

2023

PAULO TAVERNARO FRALETTI

Classificação de Imagens por Segmentação: uma análise de fotos

aéreas da Floresta Amazônica através de Aprendizado de Máquina com

Python, e com implementação em um Sistema Embarcado

Monografia apresentada ao Curso de

Engenharia Mecatrônica, da Escola de

Engenharia de São Carlos da

Universidade de São Paulo, como parte

dos requisitos para obtenção do título de

Engenheiro Mecatrônico.

Orientador: Prof. Dr. Glauco Augusto de

Paula Caurin

São Carlos

2023

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Fraletti, Paulo Tavernaro

 F797c Classificação de Imagens por Segmentação: uma
análise de fotos aéreas da Floresta Amazônica através
de Aprendizado de Máquina com Python, e com
implementação em um Sistema Embarcado / Paulo Tavernaro
Fraletti; orientador Glauco Augusto de Paula Caurin.
São Carlos, 2023.

Monografia (Graduação em Engenharia Mecatrônica)

-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2023.

1. Floresta Amazônica. 2. Classificação de

imagens. 3. Segmentação. 4. Machine Learning. 5.
Aprendizado de Máquina. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE AVALIAÇÃO

Candidato: Paulo Tavernaro Fraletti

Título:

Classificação de Imagens por Segmentação: uma análise de fotos aéreas da
Floresta Amazônica através de Aprendizado de Máquina com Python, e com
implementação em um Sistema Embarcado.

Trabalho de Conclusão de Curso apresentado à

Escola de Engenharia de São Carlos da
Universidade de São Paulo

Curso de Engenharia Mecatrônica.

BANCA EXAMINADORA

Prof. Dr. Glauco Augusto de Paula Caurin
(Orientador)

Nota atribuída: _____ (__________________) _________________________

(assinatura)

Dr.Eng. Antonio Carlos Daud Filho

Nota atribuída: _____ (__________________) _________________________
 (assinatura)

Msc. Eng. Henrique Borges Garcia

Nota atribuída: _____ (__________________) _________________________
 (assinatura)

Média: ______ (_________________)

Resultado: ________________________

Data: 12/12/2023.

Este trabalho tem condições de ser hospedado no Portal Digital da Biblioteca da EESC

SIM □ NÃO □ Visto do orientador _________________________

9,0 Nove

9,0 Nove

9,0 Nove

9,0 NOVE

 APROVADO

RESUMO

FRALETTI, P. T. Classificação de Imagens por Segmentação: uma análise de
fotos aéreas da Floresta Amazônica através de Aprendizado de Máquina com
Python, e com implementação em um Sistema Embarcado. 2023. X f. Monografia
(Trabalho de Conclusão de Curso) – Escola de Engenharia de São Carlos,
Universidade de São Paulo, São Carlos, 2023.

A preocupação quanto à preservação do meio ambiente é evidente em

tempos atuais. Nesse sentido, diminuir os casos de desmatamento é uma das ações

consideradas no combate às mudanças climáticas, principalmente em regiões de

florestas nativas e com enorme influência no clima como a Floresta Amazônica. Com

isso, por meio de classificação de imagens por segmentação através de aprendizado

de máquina, este trabalho tem como objetivo analisar e mapear fotos da região

amazônica, de modo a categorizar seu conteúdo. As categorias analisadas são:

Vegetação de Floresta (VF), Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação

(SV). Para isso, é necessário extrair informações de intensidade de brilho e contorno

de fronteiras das imagens por meio de filtros. Foram processadas 120 fotos, sendo

mapeadas pixel a pixel, de maneira que estes representam as amostras a serem

treinadas e testadas pelo modelo de machine learning através do algoritmo de

Descida de Gradiente Estocática e do classificador Support Vector Machine. Após a

obtenção do modelo treinado, este é implementado em um sistema embarcado para

que, em um projeto futuro, seja acoplado a um veículo aéreo não tripulado (drone),

realizando o processamento das imagens em tempo real. Por meio disso, é possível

atingir o objetivo final de monitorar ao longo do tempo a região amazônica e

contribuir na identificação de áreas desmatadas para que autoridades competentes

tomem a devida providência. A exatidão do modelo de aprendizado de máquina foi

de 66,62%, além da precisão média de 64%, recall médio de 60% e F1-Score médio

de 61%. Por fim, conclui-se que a performance do modelo pode ser melhorada

através de outras estratégias como utilizar imagens com três canais de cores, como

o RGB, utilizar como amostras as fotos e não cada um de seus pixeis, além de

utilizar uma câmera hiperespectral para capturar as imagens, permitindo maior

resolução em diferentes bandas do espectro eletromagnético.

Palavras-chave: Floresta Amazônica. Classificação de imagens. Segmentação.

Machine Learning (Aprendizado de Máquina).

ABSTRACT

FRALETTI, P. T. Image Classification through Segmentation: an analysis of aerial
pictures of the Amazon Forest through Machine Learning with Python, implementing
it in an Embedded System. 2023. X p. Monograph (Course final project) – São
Carlos School of Engineering, University of São Paulo, São Carlos, 2023.

Concerns regarding environmental preservation are evident nowadays. This

way, reducing deforestation is one of the actions taken to face climate changes,

mostly in native forest regions with enormous influence on climate, such as the

Amazon Forest. Hence, employing image classification using segmentation through

machine learning, this project aims to analyze and map pictures of the Amazon

region to categorize their content. The analyzed categories are Forest Vegetation,

Understorey Vegetation and Bushes, and No Vegetation. For that, it is necessary to

extract bright intensity and border contour information from the images by applying

filters. A hundred-twenty pictures were processed, being mapped pixel by pixel,

which represent the samples to be trained and tested by the machine learning model

through the Stochastic Gradient Descent algorithm and the Support Vector Machine

classifier. After obtaining the trained model, it is implemented in an embedded system

in order to, in a future project, be assembled on an Unmanned Aerial Vehicle (UAV),

processing the images in real-time. Thus, it is possible to achieve the final objective

of monitoring throughout the time the Amazon region and contributing to the

identification of deforested areas so the competent authorities can take the

appropriate measures. The accuracy of the machine learning model was 66.62%,

while the average precision was 64%, the average recall was 60%, and the average

F1-Score was 61%. Finally, it is possible to conclude that the performance of the

model can be improved through other strategies such as using images with three

color channels, as RGB, utilizing pictures as samples instead of each one of their

pixels, beyond using a hyperspectral camera to capture the images, bringing higher

resolution in different bands of the electromagnetic spectrum.

Keywords: Amazon Forest. Image classification. Segmentation. Machine Learning.

LISTA DE ILUSTRAÇÕES

Figura 1 – Mapa dos principais biomas no Brasil, Pantanal e Campos Sulinos. …. 20

Figura 2 – Arco do desmatamento. …………………………………………………….. 24

Figura 3 – Fluxograma do processo de treinamento e teste do modelo. ………….. 28

Figura 4 – Imagem dividida em quatro, com suas respectivas partes rotacionadas em

180°. ……………………………………………………………………………………….. 30

Figura 5 – Exemplo de imagem de referência segmentada na escala RGB. ……... 31

Figura 6 – Exemplo de imagem de referência segmentada na escala de cinza. …. 32

Figura 7 – Exemplo de imagem original e sua respectiva versão com um dos filtros

Gabor. ……………………………………………………………………………………… 35

Figura 8 - Exemplo de imagem original e sua respectiva versão com o filtro Canny.

……………………………………………………………………………………………… 36

Figura 9 - Exemplo de imagem original e sua respectiva versão com o filtro Roberts.

………………………………………………………………………………………………. 37

Figura 10 - Exemplo de imagem original e sua respectiva versão com o filtro Sobel.

………………………………………………………………………………………………. 38

Figura 11 - Exemplo de imagem original e sua respectiva versão com o filtro Prewitt.

………………………………………………………………………………………………. 39

Figura 12 - Exemplo de imagem original e sua respectiva versão com um dos filtros

Gaussiano. ………………………………………………………………………………… 40

Figura 13 - Exemplo de imagem original e sua respectiva versão com o filtro

Mediana. …………………………………………………………………………………… 41

Figura 14 - Exemplo de imagem original e sua respectiva versão com o filtro Chan-

Vese. ……………………………………………………………………………………….. 42

Figura 15 - Classificação de dados com dois atributos mediante o hiperplano e suas

margens. ………………………………………………………………………………….. 46

Figura 16 - Função de perda hinge. ……………………………………………………. 47

Figura 17 – Exemplo de hiperplano para classificação de imagens. ……………….. 49

Figura 18 – Matriz de confusão considerando cada uma das três classes. ……….. 52

Figura 19 - Matriz de confusão do modelo. ……………………………………………. 58

Figura 20 - Exatidão x Acumulado de dados de teste por imagens treinadas. ……. 59

Figura 21 – Rio e floresta são confundidos na versão classificada pelo modelo. … 60

Figura 22 – Imagem com apenas floresta sendo classificada pelo modelo com outras

classes. ……………………………………………………………………………………. 61

Figura 23 - Precisão x Acumulado de dados de teste por imagens treinadas. ……. 62

Figura 24 - Exemplo de imagens diferentes de floresta, com claridades diferentes. 63

Figura 25 - Recall x Acumulado de dados de teste por imagens treinadas. ………. 64

Figura 26 - F1-Score x Acumulado de dados de teste por imagens treinadas. …… 65

Figura 27 - Módulo Apalis iMX8QM 4GB WB IT. ……………………………………… 68

Figura 28 - Placa base Ixora. …………………………………………………………… 69

Figura 29 - Estrutura geral de um sistema embarcado utilizando um contêiner

Docker. ……………………………………………………………………………………. 71

Figura 30 - Resultado visual da aplicação de classificação de imagem. ………….. 73

Figura 31 – Exemplo de uma boa detecção de classes pelo modelo. …………….. 75

Figura 32 – Exemplo de uma detecção falha pelo modelo (rio confundido com

floresta). …………………………………………………………………………………… 76

Figura 33 - Composição espectral de imagens de solo e plantações de batata, chá e

repolho. ……………………………………………………………………………………. 77

SUMÁRIO

1 INTRODUÇÃO ………………………………………………………………………… 17

2 CONTEXTUALIZAÇÃO …………………………………………...…………………. 19

2.1 CARACTERÍSTICAS GEOGRÁFICAS …………………………………………... 19

2.2 CARACTERÍSTICAS SOCIOAMBIENTAIS ……………………………………… 20

2.3 PROPOSTA DE TRABALHO …………………………………………………….… 22

3 METODOLOGIA ………………………………………………………………………. 27

3.1 COMPOSIÇÃO DO ACERVO DAS IMAGENS ORIGINAIS ……………………. 28

3.2 COMPOSIÇÃO DO ACERVO DAS IMAGENS DE REFERÊNCIA …………….. 30

3.3 EXTRAÇÃO DE FEATURES – APLICAÇÃO DE FILTROS ……………………... 32

3.3.1 Pixeis Originais …………………………………………………………………… 33

3.3.2 Filtros Gabor ………………………………………………………………………. 33

3.3.3 Filtro Canny ……………………………………………………………………….. 35

3.3.4 Filtro Roberts ……………………………………………………………………... 36

3.3.5 Filtro Sobel ………………………………………………………………………... 37

3.3.6 Filtro Prewitt ………………………………………………………………………. 38

3.3.7 Filtro Gaussiano ……………………………………………………………….…. 39

3.3.8 Filtro Mediana …………………………………………………………………….. 40

3.3.9 Filtro Chan-Vese ………………………………………………………………….. 41

3.4 MAPEAMENTO E ORGANIZAÇÃO DOS PIXEIS EM MATRIZ ………………... 42

3.5 DIVISÃO DAS MATRIZES ENTRE TREINO E TESTE …………………………. 43

3.6 TREINO E TESTE DO MODELO DE MACHINE LEARNING ………………….. 44

3.6.1 Algoritmo Stochastic Gradient Descent (SGD) …………………………….. 45

3.6.2 Parâmetros do Algoritmo ………………………………………………………. 50

3.6.3 Treino do Modelo ………………………………………………………………… 51

3.6.4 Teste do Modelo …………………………………………………………………. 51

3.6.4.1 Matriz de Confusão …………………………………………………………….. 52

3.6.4.2 Exatidão …………………………………………………………………………. 53

3.6.4.3 Precisão …………………………………………………………………………. 54

3.6.4.4 Recall ……………………………………………………………………………. 54

3.6.4.5 F1-Score ………………………………………………………………………… 54

4 RESULTADOS ………………………………………………………………………… 57

4.1 EXECUÇÃO DO CÓDIGO …………………………………………………………. 57

4.2 MATRIZ DE CONFUSÃO DO MODELO …………………………………………. 57

4.3 EXATIDÃO DO MODELO ………………………………………………………….. 59

4.4 PRECISÃO DO MODELO …………………………………………………………. 61

4.5 RECALL DO MODELO ……………………………………………………………... 63

4.6 F1-SCORE DO MODELO ………………………………………………………….. 65

5 APLICAÇÃO …………………………………………………………………………… 67

5.1 VISÃO GERAL DO SISTEMA EMBARCADO UTILIZADO …………………...… 67

5.1.1 Apalis iMX8QM …………………………………………………………………… 68

5.1.2 Placa base Ixora …………………………………………………………………. 69

5.1.3 Torizon OS ………………………………………………………………………… 69

5.2 CONTEINERIZAÇÃO DA APLICAÇÃO …………………………………………… 70

5.3 RESULTADO DA APLICAÇÃO …………………………………………………….. 72

6 CONCLUSÃO ………………………………………………………………………….. 75

APÊNDICE A - CÓDIGO COMENTADO DA OBTENÇÃO DO MODELO DE
MACHINE LEARNING ………………………………………………………………….. 79

REFERÊNCIAS ………………………………………………………………………….. 87

17

1 INTRODUÇÃO

Com o passar dos anos, busca-se cada vez mais medidas de preservação da

natureza frente aos problemas climáticos enfrentados desde meados do século XIX.

Nesse contexto, a Floresta Amazônica chama a atenção do mundo quanto à luta

para sua conservação, uma vez que é extremamente importante para regular o clima

e os níveis de carbono (ALSHEHRI; OUADOU; SCOTT, 2023). Essa luta se dá pela

exploração do bioma através do garimpo e da substituição da floresta pela pecuária

e agricultura em larga escalas através do desmatamento (Rivero et al.1, 2009 apud

ZANOTTA et al., Automatic Methodology for Mass Detection of Past Deforestation in

Brazilian Amazon, 2019). Consequentemente, o desmatamento traz consequências

não só para o clima, mas também para a biodiversidade e a qualidade do solo e da

água (Foley et al.2, 2005 apud PISL, Classification of Tropical Deforestation Drivers

with Machine Learning and Satellite Image Time Series, 2023).

Nesse sentido, na tentativa de colaborar com a preservação do meio

ambiente, técnicas de inteligência artificial, como o aprendizado de máquina

(machine learning) podem contribuir para ajudar no problema do desmatamento.

Com isso, através da classificação de imagens por segmentação, é possível

determinar regiões de uma foto que contenham áreas de floresta, bem como outras

classes, para compreender o ambiente a ser analisado.

A segmentação de imagem possui diversas aplicações (AKAL; BARBU,

2019), dentre elas a detecção de objetos/regiões em uma imagem. Dessa forma, a

classificação de imagem, que é um processo de visão computacional, classifica

imagens baseado em seu conteúdo, direcionando para alguma das categorias

predefinidas (CHUGH et al., 2020).

No entanto, uma vez que as imagens podem conter mais de uma

classificação, este trabalho tende a analisar pixel a pixel de cada imagem com o

1 RIVERO, S. et al. Pecuária e desmatamento: uma análise das principais causas diretas do
desmatamento na Amazônia, Revista Nova Economia Belo Horizonte - MG, vol. 19, no. 1, pp. 41-
66, 2009.

2 FOLEY, J. et al. Global consequences of land use, Science (New York N.Y.), vol. 309, Aug. 2005.

18

intuito de classificá-los nas diferentes categorias. As categorias escolhidas foram:

Vegetação de Floresta, que compreende toda área com árvores ou floresta densa;

Vegetação Rasteira ou Arbustos, compreendendo gramados, campos e arbustos; e

Sem Vegetação, que inclui construções humanas, estradas e vias, rios, lagos e

regiões desmatadas.

As imagens a serem analisadas foram retiradas do programa Google Earth,

que disponibiliza imagens de satélite de diferentes regiões do mundo. Assim, foram

capturadas fotos da região amazônica com diversos elementos, dentre eles

florestas, rios, lagos, gramados, e mais.

Para gerar o modelo de classificação de imagens, é necessário utilizar de

algum algoritmo de machine learning. Neste trabalho, foi utilizado o algoritmo de

Descida Gradiente Estocástica junto do classificador de Support Vector Machine,

explicados ao longo deste trabalho.

Com isso, espera-se obter um modelo com exatidão elevada, capaz de

detectar com boa precisão os diferentes elementos de uma foto, classificando-os

dentre as três categorias preestabelecidas. Além disso, com o modelo pronto, a

proposta final deste trabalho é de implementá-lo em um sistema embarcado, com o

intuito de, em um novo projeto, acoplá-lo em um drone para que a análise das

imagens seja feita em tempo real. A partir disso, o objetivo final deste trabalho é

fornecer informações visuais de possíveis mudanças no ambiente dado uma área

geográfica específica, de modo que, ao longo do tempo, possa-se analisar se a

determinada região sofreu desmatamento. Assim, com essas informações, é

possível que o poder público e autoridades competentes possam promover ações

que mitiguem a destruição da Floresta Amazônica.

19

2 CONTEXTUALIZAÇÃO

Com o intuito de apresentar um contexto para a aplicação deste trabalho, as

seções seguintes constroem o panorama necessário para compreender o cenário

atual do Brasil quanto à Floresta Amazônica, de modo que os resultados deste

trabalho possam colaborar com sua preservação.

2.1 CARACTERÍSTICAS GEOGRÁFICAS

A região amazônica ocupa um extenso território na América do Sul. Sua

cobertura compreende áreas da Bolívia, Peru, Equador, Colômbia, Venezuela,

Guiana, Guiana Francesa, Suriname e Brasil, o qual possui cerca de 60% de todo o

bioma. Estima-se que 15% da biodiversidade do planeta esteja presente nesse

ecossistema (SECAS…, 2013), sendo conhecido apenas “300 espécies de

mamíferos, mais de 1.000 de aves, 240 de répteis, 600 de anfíbios, 3.000 de

formigas, 3.000 de abelhas e 1.800 de borboletas” (BIOMAS…, 2016).

Além da exuberância da fauna amazônica, a vegetação e solo também são

bastante diversos. No contexto nacional, embora a Floresta Amazônica seja

conhecida como apenas um bioma com características uniformes em toda sua área,

Biomas… (2016) expõe um conjunto de quatro deles, com características distintas:

Floresta Amazônica Densa Sempre-Verde de Terra Firme, Floresta Amazônica

Aberta Sempre-Verde de Terra Firme, Floresta Amazônica Densa Sempre-Verde

Ripária de Várzea e Igapó, e Savana Amazônica ou Campinarana.

20

Figura 1 – Mapa dos principais biomas no Brasil, Pantanal e Campos Sulinos.

Fonte: Editado pelo autor3.

Com foco nos dois maiores biomas amazônicos, o de Floresta Amazônica

Densa Sempre-Verde de Terra Firme é constituído por centenas de espécies de

árvores densamente posicionadas, formando um dossel (“teto”) em suas copas, o

que promove sombra em seu interior. Com características semelhantes, o bioma

Floresta Amazônica Aberta Sempre-Verde de Terra Firme se diferencia por ter

árvores mais espaçadas e cobertas por cipó, permitindo maior entrada de luz solar

(BIOMAS…, 2016).

2.2 CARACTERÍSTICAS SOCIOAMBIENTAIS

Apesar do enorme potencial natural a ser estudado através da biodiversidade

e recursos hídricos, além da importância e influência no clima global (BECKER;

STENNER, 2008, p.8), a Floresta Amazônica enfrenta o contínuo avanço predatório

das ações antrópicas. Essas, acometem porções relevantes do território com o

objetivo de extrair seus recursos, ou então somente substituir o terreno por alguma

atividade que consideram mais lucrativa.

3 Edição de imagem retirada de . Biomas brasileiros. 1. ed. São Paulo: Oficina de Textos, 2016.

21

Nesse sentido, o desmatamento se encontra no cerne da questão, pois é o

responsável por viabilizar desastres ecológicos em detrimento de um ecossistema

em pleno equilíbrio e funcionamento. Dentre os desastres, as queimadas, o

empobrecimento do solo e a redução da qualidade da água e do ar têm papel

fundamental no declínio da Floresta Amazônica.

Os períodos de seca tendem a propiciar a ocorrência de queimadas. Através

deles, há um decaimento no número de árvores e perda de folhas (Philips et al.4,

2009 apud . Secas na Amazônia: causas e consequências, 2013), o que permite

maior incidência de luz solar através da abertura do dossel, ocasionando no

ressecamento do material orgânico e consequente vulnerabilidade à queimadas

(SECAS…, 2013). No entanto, Secas… (2013) conclui que apesar de o clima ser

determinante no aumento das queimadas, o uso do solo garante que aconteçam.

Dessa forma, a ação do ser humano por meio do corte seletivo e desmatamento

intensifica a probabilidade de queimadas (Uhl; Kauffman5, 1990; Cochrane et al.6,

1999; Cochrane; Schulze7, 1999; Barlow; Peres8, 2004; Nepstad et al.9, 2004 apud .

Secas na Amazônia: causas e consequências, 2013), além da redução da

precipitação (Laurance; Williamson10, 2001; Laurance et al.11, 2002; Nobre; Sellers;

4 PHILLIPS, O. L. et al. Drought sensitivity of the Amazon rainforest. Science , v. 323, p. 1344-1347,
2009.

5 UHL, C.; KAUFFMAN, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in
the eastern amazon. Ecology , v. 71, n. 2, p. 437-449, 1990.

6 COCHRANE, M. A. et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests.
Science , v. 284, n. 5421, p. 1832-1835, 1999.

7 COCHRANE, M. A.; SCHULZE, M. D. Fire as a recurrent event in tropical forests of the Eastern
Amazon: Effects on Forest Structure, Biomass, and Species Composition. Biotropica , v. 31, p. 1,
2-16, 1999.

8 BARLOW, J.; PERES, C. A. Ecological responses to El Nino-induced surface fires in central
Brazilian Amazonia: management implications for flammable tropical forests. Philosophical
Transactions of the Royal Society B-Biological Sciences, v. 359, p. 1443, 367-380, 2004.

9 NEPSTAD, D. et al. Amazon drought and its implications for forest flammability and tree growth: a
basin-wide analysis. Glob. Change Biol ., v. 10, p. 704-717, 2004.

10 LAURANCE, W. F.; WILLIAMSON, G. B. Positive feedbacks among forest fragmentation, drought,
and climate change in the Amazon. Conservation Biology , v. 15, n. 6, p. 1529-1535, 2001.

11 LAURANCE, W. F. et al. Ecosystem decay of Amazonian forest fragments: A 22-year investigation.
Conservation Biology , v. 16, n. 3, p. 605-618, 2002.

22

Shukla12, 1991; Silva Dias et al.13, 2005; Costa et al.14, 2007 apud . Secas na

Amazônia: causas e consequências, 2013).

Ademais, apesar de a Floresta Amazônica oferecer uma beleza natural ímpar,

com árvores atingindo dezenas de metros de altura, seu solo é considerado escasso

em nutrientes. Dessa forma, o que mantém a exuberância da floresta é a eficiência

na reciclagem de nutrientes através do retorno constante da biomassa ao solo e sua

reabsorção facilitada por meio de fungos nas raízes das árvores (BIOMAS…, 2016).

Todavia, ainda que a pobreza do solo seja uma característica natural, Biomas…

(2016) enfatiza que o desmatamento e as queimadas tendem a piorar essa situação,

quebrando o ciclo de renovação dos nutrientes, pois como não há árvores, estes são

lixiviados, sendo levados aos rios pelas chuvas, ou perdidos para a atmosfera.

Por fim, as explorações agropecuária, madeireira e fundiária (seja pelo uso

industrial, ou pelo garimpo) impulsionam o desmatamento na região amazônica,

afetando as bacias dos principais afluentes do rio Amazonas, contaminando-as

através da fumaça, insumos agrícolas e do mercúrio por meio das atividades de

garimpo (BECKER; STENNER, 2008). Becker e Stenner (2008) evidenciam que o

Brasil se encontra no grupo dos dez maiores emissores de gás carbônico, sendo

que o maior responsável é o desmatamento da Amazônia. Além disso, os autores

apontam que “o aumento em curso da demanda global por produtos intensivos em

água, como a carne e a soja, representa uma pressão extra sobre as grandes

reservas d'águas”, motivando a substituição da floresta pelo pasto.

2.3 PROPOSTA DE TRABALHO

Em vista do que foi discutido nas seções anteriores, este trabalho tem a

intenção de proporcionar uma análise do desmatamento na Floresta Amazônica,

12 NOBRE, C. A.; SELLERS, P. J.; SHUKLA, J. Amazonian deforestation and regional climate
change. Journal of Climate , v. 4, n. 4, p. 957-988, 1991.

13 SILVA DIAS, M. A. F.; COHEN, J. C. P.; GANDU, A. W. Clouds, rain and biosphere interactions in
Amazon. Acta Amazonica , v. 35, n. 2, p. 215-222, 2005.

14 COSTA, M. H. et al. Climate change in Amazonia caused by soybean cropland expansion as
compared to caused by pastureland expansion. Geophysical Research Letters , v. 34, 2007.

23

com o intuito de evidenciar regiões com e sem cobertura vegetal de floresta por meio

de imagens aéreas.

 A área amazônica a ser estudada encontra-se no “Arco do desmatamento”.

De acordo com o Instituto de Pesquisa Ambiental da Amazônia (IPAM), o Arco do

desmatamento é a:

Região onde a fronteira agrícola avança em direção à floresta e também
onde encontram-se os maiores índices de desmatamento da Amazônia. São
500 mil km² de terras que vão do leste e sul do Pará em direção oeste,
passando por Mato Grosso, Rondônia e Acre.

A Figura 2 destaca a região correspondente ao Arco do desmatamento. Como

exposto anteriormente, a área em destaque tem predominância dos biomas Floresta

Amazônica Aberta Sempre-Verde de Terra Firme e Floresta Amazônica Densa

Sempre-Verde de Terra Firme. Contudo, o recorte a ser analisado compreende as

proximidades de São Félix do Xingu-PA, tendo em vista a degradação do alto curso

do rio Tapajós devido à atividade humana (BECKER; STENNER, 2008), além de ser

a cidade que mais emite CO2 do Brasil pelo mesmo motivo (GRILLI, 2021).

24

Figura 2 – Arco do desmatamento.

Fonte: Editado pelo autor15.

Dessa forma, a partir da definição da área de interesse, o passo seguinte será

obter imagens aéreas do local. Para isso, considerando as limitações deste trabalho,

as fotografias serão obtidas pelo Google Earth, software que permite a visualização

da Terra através de imagens de satélite. As imagens capturadas terão distância do

solo de 600 metros.

Em seguida, será aplicado um modelo de visão computacional que analisará

as imagens, tendo-as como base para treinar a inteligência artificial. Os métodos

discutidos em seções posteriores terão como objetivo identificar três categorias:

regiões com floresta (Vegetação de Floresta), regiões de vegetação não arbórea

(Vegetação Rasteira e Arbustos) e áreas urbanas, rios e lagos (Sem Vegetação).

Com isso, espera-se analisar regiões desmatadas e com recuperação de floresta ao

longo do tempo, monitorando a Floresta Amazônica com o passar dos anos, e

15 Edição e compilação de imagens retiradas de Mapa do Brasil, Info Escola –
https://www.infoescola.com/geografia/mapa-do-brasil/; Fronteira do desmatamento na Amazônia
avançou entre 2018 e 2019, afirma estudo, O Globo, 2019 –
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-
2019-afirma-estudo-1-24141480; São Félix do Xingu, Wikipedia – https://pt.wikipedia.org/wiki/S
%C3%A3o_F%C3%A9lix_do_Xingu.

https://www.infoescola.com/geografia/mapa-do-brasil/
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480

25

oferecendo dados para basear políticas públicas ambientais. Vale mencionar que o

objetivo deste trabalho é treinar o modelo matemático para que possa ser utilizado

periodicamente em campo.

Com o modelo treinado, será feito sua integração a um hardware embarcado,

de modo que as imagens sejam processadas nele. Nesse sentido, este trabalho

pode servir como alicerce para outros projetos que queiram, por exemplo, analisar

em tempo real a região amazônica. Ainda, havendo a possibilidade de adaptar o

hardware embarcado a um drone (veículo aéreo não tripulado) com uma câmera

apropriada, é possível fotografar e processar a imagem de maneira simultânea.

26

27

3 METODOLOGIA

Tendo em vista a situação atual da Floresta Amazônica apresentada

anteriormente, vê-se necessário planos de ação para contribuir com sua

manutenção. Nesse sentido, a proposta estudada nesta seção tem como objetivo

mapear a região amazônica através de fotos de satélite, de modo a segmentá-las

em três classes: Vegetação de Floresta, Vegetação Rasteira e Arbustos, e Sem

Vegetação (como rios, lagos e elementos de intervenção humana – edificações, vias

e áreas desmatadas). Com isso, é possível determinar ao longo do tempo mudanças

na paisagem de áreas específicas a partir do aumento ou diminuição das regiões

classificadas.

A análise de classificação das regiões das fotos é feita através de

aprendizado de máquina tradicional (do inglês Traditional Machine Learning,

referenciado ao longo do texto como ML) com a linguagem de programação Python.

Sendo uma área da Inteligência Artificial, ML compreende a análise de dados e

algoritmos com a intenção de simular o aprendizado humano, melhorando-o

gradualmente (IBM, 2023). Assim, o modelo de aprendizado de máquina deste

trabalho é treinado imagem por imagem, de modo a assimilar diferentes texturas,

contornos e tonalidades para definir em novas fotos as diferentes classificações

possíveis.

A figura abaixo ilustra todo o processo discutido nesta seção. Primeiramente,

as imagens originais são reunidas, servindo de base para realizar a classificação

nas imagens de referência. Logo, são aplicados filtros nas imagens originais com o

intuito de destacar formas e luminosidade para facilitar sua compreensão. Assim,

cada imagem é mapeada pixel a pixel, sendo seus dados então organizados em

matrizes. Em sequência, cada um dos pixeis de cada imagem original, carregando

consigo suas características definidas pelos filtros, é alocado ou em um grupo de

treino ou um de teste. Dessa forma, o respectivo pixel da respetiva imagem de

referência é designado a um grupo próprio de mesma classe (treino ou teste). Por

fim, o modelo é treinado com os grupos de treino de cada imagem e então testado

com os grupos de teste de todas as imagens treinadas até o momento para assim

28

obter-se informações importantes como a exatidão. Após isso, todo o processo de

alocação dos grupos de treino e teste, treinamento e depois teste do modelo é

repetido para cada imagem.

Figura 3 – Fluxograma do processo de treinamento e teste do modelo.

Fonte: Compilação do autor.

3.1 COMPOSIÇÃO DO ACERVO DAS IMAGENS ORIGINAIS

Considerando que modelos de machine learning necessitam de grandes

quantidades de dados como amostras para seu treinamento, é esperado que neste

caso o banco de fotos seja suficientemente grande. No entanto, é preciso definir o

que são amostras no caso em questão.

29

De acordo com a página do Governo do Canadá (Government of Canada,

2023), na seção “Satellite imagery, elevation data, and air photos”, a classificação

digital de imagem:

[…] utiliza a informação espectral representada pelos números digitais em
uma ou mais bandas espectrais, e tenta classificar cada pixel baseado
nessa informação espectral. […] o objetivo é atribuir todos os pixeis de uma
imagem a classes ou temas específicos.

Em outras palavras, cada pixel é representado por um ou mais valores pelos

quais, em conjunto, definem a qual categoria de classificação aquele pixel pertence.

Como exemplo, dada uma imagem qualquer na escala RGB (Red, Green, Blue –

Vermelho, Verde e Azul, em português) de tamanho 1920 x 1080 pixels (px), esta é

interpretada computacionalmente como uma matriz de três dimensões: 1920 por

1080 pixeis (duas dimensões), tendo cada pixel três valores (terceira dimensão -

cada um deles indicando o valor de cada matiz dos quais vermelho, verde e azul).

Assim, considerando essa imagem como um array da biblioteca utilizada NumPy16,

dada a função shape17, a representação seria a seguinte: (1920, 1080, 3). Para

facilitar a computação dos dados, e neste caso para adequá-los aos requisitos das

bibliotecas trabalhadas em Python, as imagens são redimensionadas e convertidas

em escala de cinza, sendo então representadas por uma matriz de duas dimensões:

2.073.600 linhas (multiplicação de 1920 por 1080, agora em um mesmo eixo) por

uma coluna, representando os valores de cada pixel na escala cinza. Portanto,

considerando a representação da imagem como um array, esse seria o formato:

(2073600, 1).

Nesse sentido, neste trabalho, cada amostra é uma linha dessa matriz de

duas dimensões, cujo valor do pixel esperado (a classe que pertence) encontra-se

na matriz de duas dimensões da imagem correspondente de referência com o

mesmo índice.

A partir disso, para o modelo em questão foram reunidas 20 fotos de satélite,

retiradas do Google Earth, de tamanho 1920 x 1080 px da região amazônica (mais

16 Para mais informações sobre array, acesse:
https://numpy.org/doc/stable/reference/generated/numpy.array.html.

17 Mais informações sobre a função em:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html.

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html
https://numpy.org/doc/stable/reference/generated/numpy.array.html

30

precisamente da cidade de São Félix do Xingu – PA). As imagens foram capturadas

a uma distância de 600 m do solo.

Assim, considerando as limitações de hardware do computador utilizado para

treinar o modelo de ML (processador Intel® Core™ i3-8130U CPU @ 2.20GHz, 2

núcleos, 4 threads; 20 GB de RAM), essas imagens foram divididas em quatro,

totalizando 80 fotos de 960 x 540 px. Ainda, com o intuito de aumentar a quantidade

de fotos, cada uma delas teve uma cópia rotacionada em 180°.

Portanto, o banco de imagens originais totaliza 160 fotos, cada uma de

tamanho 960 x 540 px. Além disso, o número de amostras total é então de

82.944.000, que são divididos em grupos de treino e teste, como discutido

anteriormente.

Figura 4 – Imagem dividida em quatro, com suas respectivas partes rotacionadas em 180°.

Fonte: Compilação do autor.

3.2 COMPOSIÇÃO DO ACERVO DAS IMAGENS DE REFERÊNCIA

Baseadas em suas respectivas imagens originais, as imagens de referência

são aquelas que foram segmentadas dentre as três categorias:

• Vegetação de Floresta (VF)

• Vegetação Rasteira e Arbustos (VRA)

31

• Sem Vegetação (SV)

Com isso, cada uma das classificações foi representada por uma cor na

escala RGB: VF representada por verde (0, 255, 0), VRA por azul (0, 0, 255) e SV

por vermelho (255, 0, 0).

Figura 5 – Exemplo de imagem de referência segmentada na escala RGB.

Fonte: Compilação do autor.

A segmentação foi realizada no editor de imagens Inkscape18, sendo cada

categoria definida manualmente com as ferramentas do software. No entanto,

percebeu-se após alguns testes do modelo que a quantidade de classificações era

bastante superior a três. A partir disso, é possível que no momento de exportar as

imagens de referência do editor em formato PNG, as fronteiras entre as cores

tivessem valores RGB diferentes, e quando convertidos na escala de cinza, teriam

também valores diferentes.

Com isso, foi necessário realizar uma outra classificação. O primeiro ponto foi

considerar que a conversão do vermelho (RGB: 255, 0, 0) para escala de cinza é 76,

e da mesma forma para o verde (RGB: 0, 255, 0) sendo 150 e para o azul (RGB: 0,

0, 255) sendo 29. Então, pixel a pixel de cada imagem de referência, depois de ser

convertida na escala de cinza, foi analisado e se estivesse dentro dos limites de 0 e

18 Mais informações sobre o software em: https://inkscape.org/about/overview/.

https://inkscape.org/about/overview/

32

52 seria categorizado como 29 (azul), de 53 a 113 como 76 (vermelho), e de 114 a

255 como 150 (verde). Dessa forma, foram geradas outras 160 imagens de

referência com três classificações e na escala de cinza.

Figura 6 – Exemplo de imagem de referência segmentada na escala de cinza.

Fonte: Compilação do autor.

3.3 EXTRAÇÃO DE FEATURES – APLICAÇÃO DE FILTROS

 Como visto anteriormente, no caso da classificação de imagem deste

trabalho, as amostras para treinar e testar o modelo de ML são pixeis com diferentes

valores, analisados em conjunto para determinar a qual categoria pertence cada

pixel. Nesse sentido, cada um desses valores é indicado como uma feature (um

atributo, uma característica) do pixel. Assim, um pixel pode ser entendido como um

array, um arranjo de atributos.

Esses atributos são obtidos por meio da aplicação de filtros nas imagens

originais, de modo que realcem estruturas das fotos, como contornos, texturas e

intensidade de brilho. Segundo Shijin Kumar e Dharun (2016), “a extração de

características reduz o tamanho de dados de uma imagem, obtendo informações

necessárias da imagem [a ser] segmentada”. Assim, a grande quantidade de

33

informações que cada pixel possui em uma dimensão é filtrada e separada em

várias camadas com as características mais importantes.

Contudo, Shijin Kumar e Dharun (2016) afirmam que obter as melhores

features pode ser difícil e levar tempo. Por outro lado, fornecer os atributos

adequados ao modelo de ML proporciona exatidão e eficiência na tomada de

decisão (SHAHAJAD; GAMBHIR; GANDHI, 2021).

A partir disso, nas subseções a seguir são apresentados os filtros utilizados

para detectar as características dos pixeis das imagens originais. É importante

mencionar que ao aplicar cada filtro, as respectivas funções em Python recebem a

imagem já convertida em escala de cinza, filtram e transformam-na em uma

dimensão. Logo, os valores são organizados em dataframes da biblioteca pandas:

estruturas de dados tabular de duas dimensões (pandas, 2023).

A estratégia de extração de features por meio de filtros foi retirada de

Bhattiprolu (2019).

3.3.1 Pixeis Originais

Considerando os valores originais dos pixeis das imagens retiradas do Google

Earth após o processamento na escala de cinza, é possível que nem todas as

informações importantes de cada um deles sejam percebidas pelos filtros aplicados.

Devido a isso, como estratégia, utilizou-se os valores originais dos pixeis como uma

das features.

3.3.2 Filtros Gabor

 Os filtros Gabor são produtos da modulação de sinais sinusoidais e

Gaussianos (MEHROTRA; NAMUDURI; RANGANATHAN, 1992). A partir do estudo

34

aprofundado e da representação matemática, modelos computacionais baseados

em Gabor surgiram para detectar contornos e texturas, além de proporcionar

estimativas de fluxo ótico e compactação de dados de imagem (Manjunath;

CheUappa19, 1991; Porat; Zeevi20, 1989; Daugman21, 1988 apud MEHROTRA R.,

NAMUDURI K.R., RANGANATHAN N. Gabor filter-based edge detection, Pattern

Recognition, 1992).

O filtro Gabor é representado por uma expressão matemática no plano dos

complexos, tendo uma parte real e outra imaginária. Abaixo encontra-se a

expressão, na qual λ é o comprimento de onda do sinal sinusoidal, θ é a orientação

das faixas normais às paralelas da função Gabor, Φ é o deslocamento de fase, σ é o

desvio padrão do sinal Gaussiano, γ é a proporção espacial, e x e y são as

coordenadas da imagem.

g (x , y ; λ ,θ ,Φ ,σ , γ)=exp(−x ' ²+γ ² y ' ²
2 σ ²

)exp(i (2π x'
λ

+Φ))

Onde:

x'=xcosθ+ ysenθ y'=−xsenθ+ ycosθ

Após alguns testes, foram definidos os valores a seguir:

λ=[0 , π
4
, 2π
4

, 3π
4

];θ=[π
4
, 2 π
4

, 3 π
4

] ;Φ=0 ;σ=[1,3]; γ=[0.05 ,0.5]

Os filtros Gabor inseridos no código em Python foram aplicados através das

funções getGaborKernel() e filter2D() da biblioteca OpenCV22. Assim, considerando

todas as permutações possíveis, obteve-se 48 filtros Gabor para cada imagem

original, ou seja, 48 atributos diferentes para cada pixel de cada imagem. Abaixo há

um exemplo de foto com um dos filtros Gabor.

19 MANJUNATH, B.S. and CHEUAPPA, R. A computational approach to boundary detection, Proc.
CVPR 91, pp. 358-363, 1991.

20 PORAT, M. and ZEEVI, Y. Y. The generalized Gabor scheme of image representation in biological
and machine vision, IEEE Trans. Pattern Analysis Mach. LntelL 10(4), 452-468, 1989.

21 DAUGMAN, J.G. Complete 2-D Gabor transforms by neural networks for image analysis and
compression, IEEE Trans. ASSP 36(7), 1169-1179, 1988.

22 Mais informações sobre as funções em:
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51
cc3599 e
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb36608
6b5a04.

https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#ga27c049795ce870216ddfb366086b5a04
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51cc3599
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#gae84c92d248183bd92fa713ce51cc3599

35

Figura 7 – Exemplo de imagem original e sua respectiva versão com um dos filtros Gabor.

Fonte: Google Earth (2023); Compilação do autor.

3.3.3 Filtro Canny

O filtro Canny é amplamente usado em visão computacional como forma de

detectar contornos e mudanças acentuadas de intensidade (DING; GOSHTASBY,

2001). Nesse sentido, o filtro Canny é operado por convolução da primeira derivada

da função Gaussiana, que indica o ponto de máximo dela, representando o contorno

(UFF, 2023). Segundo Ding e Goshtasby (2001), o filtro “classifica um pixel como

borda se seu gradiente de magnitude for maior do que o daqueles que estão ao seu

redor na direção de máxima mudança de intensidade”. Assim, são definidos limiares

superior e inferior de gradientes para servir como referência de quais pixeis devem

ser considerados borda (método chamado thresholding com histerese).

O filtro foi aplicado no código através da função Canny() da biblioteca

OpenCV23. Abaixo apresenta-se um exemplo de imagem original após a aplicação de

Canny.

23 Mais informações sobre a função em:
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba
04e2232de.

https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de
https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#ga04723e007ed888ddf11d9ba04e2232de

36

Figura 8 - Exemplo de imagem original e sua respectiva versão com o filtro Canny.

Fonte: Google Earth (2023); Compilação do autor.

3.3.4 Filtro Roberts

O filtro Roberts é utilizado para detectar linhas horizontais e verticais

(Owotogbe; Ibiyemi; Adu24, 2019 apud AMORIM, A.; POLASTRI, M. J. Evaluation of

Edge Detection Filters Applied to Corroded Steel Sheets, 2020). O método utilizado é

simples, através de medições de gradientes espaciais por meio de núcleos 2x2 px e

suas cópias rotacionadas em 90° (FISHER et al., 2003-a). Dessa forma, o filtro

realça regiões de alta frequência espacial que indicam as bordas.

No código, foi utilizada a função roberts() da biblioteca scikit-image25. A seguir,

a aplicação de Roberts em uma das imagens originais.

24 OWOTOGBE, J. S., IBIYEMI, T. S., ADU, B. A. Edge Detection Techniques on Digital Images - A
Review, Int. J. Innov. Sci. Res. Technol., vol. 4, no. 11, pp. 329–332, 2019.

25 Mais informações da função em:
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.roberts.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.roberts

37

Figura 9 - Exemplo de imagem original e sua respectiva versão com o filtro Roberts.

Fonte: Google Earth (2023); Compilação do autor.

3.3.5 Filtro Sobel

Semelhante ao filtro Roberts, o filtro Sobel tende a ser mais lento para

computar. Além disso, em vez de um núcleo 2x2 px, utiliza um 3x3 px e sua cópia

rotacionada em 90° (FISHER et al., 2003-b). A aplicação do filtro é ideal para

encontrar bordas com curvas suaves (AMORIM; POLASTRI, 2020).

No código em Python, foram utilizadas as funções sobel_h() e sobel_v() da

biblioteca scikit-image26. Abaixo encontra-se um exemplo de aplicação do filtro.

26 Mais informações das funções em:
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_h e https://scikit-
image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.sobel_h

38

Figura 10 - Exemplo de imagem original e sua respectiva versão com o filtro Sobel.

Fonte: Google Earth (2023); Compilação do autor.

3.3.6 Filtro Prewitt

O filtro Prewitt, assim como Roberts, é adequado para detectar bordas

verticais e horizontais (AMORIM; POLASTRI, 2020). Ademais, Prewitt é também

semelhante a Sobel, uma vez que também utiliza núcleos 3x3 px (The University of

Auckland, 2023).

No código em Python, as funções prewitt_h() e prewitt_v() da biblioteca scikit-

image27 foram usadas. Abaixo encontra-se um exemplo de aplicação do filtro.

27 Mais informações das funções em:
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_h e
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_v.

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_v
https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.prewitt_h

39

Figura 11 - Exemplo de imagem original e sua respectiva versão com o filtro Prewitt.

Fonte: Google Earth (2023); Compilação do autor.

3.3.7 Filtro Gaussiano

O filtro Gaussiano atua de modo a aplicar média de pesos nos pixeis de

acordo com a distribuição Gaussiana (NIXON; AGUADO, 2002). Assim, o filtro

consegue desfocar a imagem, removendo detalhes e ruído (FISHER et al., 2003-c).

A expressão matemática é apresentada abaixo, na qual σ define o grau de desfoque,

e x e y são as coordenadas da imagem.

G (x , y ;σ)= 1
2 πσ ²

exp(−x ²+ y ²
2σ ²

)

Após testes, os valores de σ foram determinados como 1 e 3. O código em

Python utilizou da biblioteca SciPy a função gaussian_filter()28. A seguir, um exemplo

de foto com o filtro Gaussiano aplicado.

28 Mais informações sobre a função em:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html

40

Figura 12 - Exemplo de imagem original e sua respectiva versão com um dos filtros Gaussiano.

Fonte: Google Earth (2023); Compilação do autor.

3.3.8 Filtro Mediana

O filtro Mediana é usado para reduzir ruído, de modo a preservar detalhes da

imagem (FISHER et al., 2003-d). Atua de modo a substituir o valor de um pixel pela

mediana dos valores dos pixeis ao redor.

No código, foi utilizada a função median_filter() da biblioteca SciPy29. Abaixo

há um exemplo de imagem com o filtro Mediana aplicado.

29 Mais informações sobre a função em:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndima
ge.median_filter.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter

41

Figura 13 - Exemplo de imagem original e sua respectiva versão com o filtro Mediana.

Fonte: Google Earth (2023); Compilação do autor.

3.3.9 Filtro Chan-Vese

Segundo Akal e Barbu (2019), o filtro Chan-Vese aplica um método de baixo

nível de segmentação de imagem, de modo a manter constante a regularização de

comprimento das bordas em união com algoritmos de otimização para encontrar

regiões de interesse. Em outras palavras, o filtro Chan-Vese não depende das

bordas, mas sim de modelos de intensidade constante que definem regiões internas

e externas para que assim as fronteiras sejam encontradas.

O código utilizou da função chan_vese() da biblioteca scikit-image30. Abaixo

vê-se um exemplo de aplicação desse filtro.

30 Mais informações sobre a função em:
https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_v
ese.

https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_vese
https://scikit-image.org/docs/stable/api/skimage.segmentation.html#skimage.segmentation.chan_vese

42

Figura 14 - Exemplo de imagem original e sua respectiva versão com o filtro Chan-Vese.

Fonte: Google Earth (2023); Compilação do autor.

3.4 MAPEAMENTO E ORGANIZAÇÃO DOS PIXEIS EM MATRIZ

Depois de definidos as 57 variações de filtros, é necessário aplicá-los a cada

imagem. Assim, cada pixel é mapeado e recebe um atributo a partir de cada filtro.

Com isso, no total, cada pixel é representado por um arranjo de 57 atributos. Após a

aplicação de cada filtro, a imagem é redimensionada em apenas um eixo.

A partir disso, a cada imagem, os dados são organizados em um dataframe

resultante de outros dataframes cujas informações provêm de cada aplicação de

filtro. Um exemplo de dataframe é exibido a seguir:

 Gabor1 Gabor2 Gabor3 Gabor4 Gabor5 ... Prewitt Gaussiana_s3 Gaussiana_s7 Mediana Chan_Vese
0 0 0 104 92 27 ... 4 42 60 18 10
1 0 0 127 112 9 ... 26 45 61 18 19
2 0 0 182 163 27 ... 50 50 61 32 20
3 0 0 255 241 34 ... 57 56 62 44 20
4 0 0 255 255 35 ... 75 63 62 63 15
...
518395 0 0 255 255 37 ... 21 60 59 54 66
518396 0 0 255 255 38 ... 27 61 59 63 146
518397 0 0 255 255 39 ... 9 62 59 66 200
518398 0 0 255 255 42 ... 5 62 59 67 240
518399 0 0 255 255 37 ... 3 62 59 67 255

[518400 rows x 57 columns]

Em seguida, cada dataframe é alocado em um dicionário, cuja chave é o

número da imagem.

De maneira análoga, o mesmo processo acontece com as imagens de

referência. No entanto, em vez de de existirem dataframes que compõem um outro,

43

como só há uma dimensão (uma vez que são os valores de referência), só existe um

dataframe no processo. Abaixo encontra-se a saída do dataframe de uma das

imagens de referência.

 Imagens de Referência
0 29
1 29
2 29
3 29
4 29
... ...
518395 29
518396 29
518397 29
518398 29
518399 29

[518400 rows x 1 columns]

Logo depois, ambos os dicionários gerados pelas funções que processam as

imagens originais filtradas e as imagens de referência são convertidos em listas com

apenas os dataframes. Isso acontece para que seja possível iterar sobre cada

dataframe resultante de cada imagem original filtrada e respectiva imagem de

referência.

3.5 DIVISÃO DAS MATRIZES ENTRE TREINO E TESTE

Na função principal do código, cada dataframe de cada imagem original

filtrada e cada dataframe da respectiva imagem de referência são iterados por vez.

Nesse sentido, respectivamente, os dataframes são denominados como dados X e

y.

Assim, X e y são enviados para a função que tem o propósito de treinar o

modelo de machine learning junto ao modelo parcial até aquele momento, além de

todas as amostras de X e y de teste até então. Isso acontece a cada iteração para

cada imagem, de modo que no início, o modelo parcial é exatamente o classificador

com seus parâmetros pré-definidos (discutido na seção seguinte), e as amostras de

treino são, respectivamente, um dataframe e um array vazios.

44

Dessa forma, já na função que treina o modelo de ML, X e y passam pela

função train_test_split() da biblioteca scikit learn31, de modo que 80% de cada grupo

de amostras sejam direcionados para treino, enquanto o restante seja direcionado

para teste. É importante mencionar que, para garantir a reprodutibilidade dos

resultados, o argumento random_state é definido como um inteiro. Assim, dado o

mesmo conjunto X e y, os grupos de treino e teste serão os mesmos.

Tendo os grupos de treino e teste definidos, obtém-se, portanto, X_treino,

y_treino, X_teste e y_teste. Logo, y_treino e y_teste são convertidos para arranjos

de uma dimensão para adequar-se aos requisitos das funções que os utilizam. Por

fim, o modelo é treinado parcialmente com X_treino e y_treino através do atributo

partial_fit() da biblioteca scikit learn32, o que será discutido adiante na próxima seção.

3.6 TREINO E TESTE DO MODELO DE MACHINE LEARNING

Para realizar classificação de imagens, muitos algoritmos de machine learning

podem ser utilizados. Esses algoritmos, para o caso de classificação de imagens,

são chamados de classificadores (CHUGH et al., 2020).

Nesse sentido, após testes com diferentes classificadores como

RandomForestClassifier()33 e AdaBoostClassifier()34, ambos da biblioteca scikit learn,

verificou-se que o algoritmo mais apropriado para este caso é o SGDClassifier()35,

também da biblioteca scikit learn. Isso se deve não só por ter se mostrado efetivo no

treinamento de modelos linerares (Shalev-Shwartz; Ben-David36, 2014 apud

31 Mais informações sobre a função em:
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.

32 Mais informações sobre o atributo em:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.
linear_model.SGDClassifier.partial_fit.

33 Mais informações sobre o classificador em:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

34 Mais informações sobre o classificador em:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html.

35 Mais informações sobre o classificador em:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html.

36 SHALEV-SHWARTZ, S.,BEN-DAVID, S. Understanding machine learning: From theory to
algorithms, Cambridge University Press, 2014.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.partial_fit
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.partial_fit
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

45

CATAPANG, J. K., Optimizing Speed and Accuracy Trade-off in Machine Learning

Models via Stochastic Gradient Descent Approximation, 2022), mas também por

oferecer a possibilidade de realizar treinos parciais por meio do atributo partial_fit().

Essa característica do algoritmo é ideal para o caso em questão, uma vez que a

quantidade de amostras é bastante elevada (82.944.000) e existem limitações de

hardware (20 GB de RAM e processador com quatro núcleos). Assim, a

possibilidade de treinamentos parciais foi decisiva na escolha deste algoritmo, uma

vez que devido à quantidade de amostras, quando treinadas em uma única vez com

os outros classificadores, havia sobrecarga de RAM, e o código era encerrado antes

do fim.

3.6.1 Algoritmo Stochastic Gradient Descent (SGD)

De acordo com a página da biblioteca scikit learn (2023),

[O algoritmo SGD] implementa modelos lineares regularizados com
aprendizado de descida gradiente estocástica: o gradiente de perda é
estimado a cada [iteração] e o modelo é atualizado ao longo do processo
por meio de um cronograma de força decrescente (conhecido como “taxa de
aprendizado”).

No caso deste trabalho, o modelo linear regularizado usado para treinar o

modelo de machine learning é um SVM (Support Vector Machine). Um SVM é um

algoritmo supervisionado de ML que implementa fronteiras de decisão (ou um

hiperplano multidimensional) de modo a designar dados com n dimensões (neste

caso as amostras com 57 atributos) em classes, permitindo que novos dados sejam

facilmente classificados na classe correta (SAHU; SHARMA, 2023).

Considerando os dados de treino (X_treino) com 57 atributos cada e seus

respectivos dados de referência (y_treino), o hiperplano neste caso deve ter n-1

dimensões, onde n é a quantidade de atributos/características que definem os dados

de treino. Assim, o hiperplano neste caso teria 56 dimensões, algo impossível de ser

representado graficamente. Por conta disso, para facilitar a explicação, a Figura 15

46

apresenta o caso de um hiperplano com uma dimensão (linha vermelha) dado um

conjunto de dados com duas dimensões (atributos), representados por X1 e X2, do

qual os dados de referência podem ter valores +1 ou -1, indicando as classes às

quais os dados a serem treinados pertencem.

Figura 15 - Classificação de dados com dois atributos mediante o hiperplano e suas margens.

Fonte: SAHU, Chandan Kumar; SHAMAR, Maitrey. HINGE LOSS IN SUPPORT VECTOR

MACHINES, School of Computer Sciences, National Institute of Science Education and Research,

Bhubaneshwar, Homi Bhabha National Institute, 2023. Disponível em:

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf. Acesso em: 28 nov. 2023.

É possível verificar que as margens do hiperplano são definidas por outros

dois hiperplanos paralelos ao central. Os hiperplanos são definidos como segue:

HiperplanoCentral :ŵT⋅x̂−b=0

HiperplanoMargem Superior :ŵT⋅x̂−b=1

HiperplanoMagem Inferior : ŵT⋅x̂−b=−1

Das expressões matemáticas dos hiperplanos, wT é o vetor transposta dos

pesos do classificador SVM, x é o vetor de todas as amostras e b é valor de viés do

classificador. Dessa forma, todas as amostras acima da margem superior pertencem

a uma classe e, similarmente, todas as amostras abaixo da margem inferior

pertencem a outra classe. Dessa forma, a intenção do classificador é maximizar o

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf

47

comprimento da margem para melhor definir as regiões de cada classe e, para evitar

que amostras encontrem-se dentro dela, estipula-se um limitador como segue:

yi(ŵ
T⋅x̂i−b)≥1

Nessa expressão, yi é o dado de referência de cada amostra, xi é o vetor de

cada amostra e o termo entre parênteses é o valor associado à previsão do modelo.

Quando existem dados que se encontram dentro da margem, o método

utilizado é chamado de soft-margin, que permite “sacrificar” algumas das amostras

quanto à classificações incorretas.

Dessa forma, para definir a soft-margin, utiliza-se da função de perda. Neste

caso, a função de perda é definida como hinge, passada pelo parâmetro loss do

SGDClassifier(). A função de perda calcula o erro entre o valor previsto para uma

classe e o valor real daquela classe para cada amostra. Assim, para otimizar o

sistema, é necessário minimizar esse erro. A Figura 16 mostra a função de perda

hinge.

Figura 16 - Função de perda hinge.

 Fonte: SAHU, Chandan Kumar; SHAMAR, Maitrey. HINGE LOSS IN SUPPORT VECTOR

MACHINES, School of Computer Sciences, National Institute of Science Education and Research,

Bhubaneshwar, Homi Bhabha National Institute, 2023. Disponível em:

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf. Acesso em: 28 nov. 2023.

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf

48

Ainda, a função de perda hinge é representada matematicamente pela

expressão abaixo:

L(y)=max (0,1−y i(ŵ
T⋅x̂ i−b))

Assim, quando a multiplicação do valor real (yi) e do valor previsto (termo

entre parênteses) é maior ou igual a um, significa que a amostra xi foi classificada de

maneira correta e a penalidade para essa amostra é mínima (L(y)=0). Por outro

lado, caso L(y)>0 , significa que a amostra foi classificada em uma das outras

classes e que a penalidade terá valor proporcional a quão longe da classificação

correta a amostra se encontra.

Com isso, o algoritmo de Gradiente Descendente Estocástico tenta otimizar o

processo de classificação por meio da correção do erro da função de perda nas

iterações seguintes com novas amostras. Isso acontece através do cálculo dos

novos pesos a partir da derivada parcial da função em relação aos pesos. As

expressões do novo peso e da derivada parcial são mostradas a seguir:

w t+1=w t−η ∂ L
∂w t

∂ L
∂w t

=∇ wL (wt ; x i; yi)

Assim, wt+1 indica os pesos da iteração seguinte t+1, η é o valor da taxa de

aprendizado (learning rate), e a derivada parcial da função de perda em relação aos

pesos é o gradiente da função de perda em relação aos pesos anteriores wt, da

amostra xi e de seu valor de referência yi (KANDEL; CASTELLI; POPOVIČ, 2020).

Além disso, a escolha da amostra xi e sua respectiva referência yi para corrigir os

pesos é aleatória.

Por conseguinte, a partir das correções de pesos e assim da classificação das

novas amostras, o classificador SVM consegue aumentar a margem do hiperplano e

definir com maior precisão a separação das classes.

No caso de um problema com três classes como o em questão, o algoritmo

SGD utiliza do método one versus all (um contra todos), de modo que para cada

classe existe um classificador SVM binário que qualifica a amostra entre pertencente

49

a essa classe ou às outras. Por consequência, cada classificador gera um

hiperplano que delimita a classe considerada verdadeira (a classe de seu

classificador) das outras. Assim, durante o treino de classificação, todos os três

classificadores são acionados, e aquele que tem o maior grau de confiança

determina a qual classe pertence a amostra.

Desse modo, a cada imagem, todo o processo de posicionamento dos

hiperplanos e margens, e classificação de amostras é repetido. Como já discutido,

no caso deste trabalho existem 57 atributos por arranjo de pixel. Assim, a

demonstração visual do hiperplano seria complexa. Por isso, abaixo há um exemplo

retirado da página da biblioteca scikit learn no qual são classificadas amostras de

flores entre três espécies (classes) de acordo com dois atributos: comprimento e

espessura de sépalas.

Figura 17 – Exemplo de hiperplano para classificação de imagens.

Fonte: 1.5. Stochastic Gradient Descent. scikit learn, 2023. Disponível em:
https://scikit-learn.org/stable/modules/sgd.html. Acesso em: 20 nov. 2023.

Na Figura 17, cada linha tracejada representa um hiperplano de um

classificador binário do método “um contra todos”, enquanto no plano de fundo

https://scikit-learn.org/stable/modules/sgd.html

50

encontram-se as regiões coloridas que representam as áreas de decisão induzidas

pelos hiperplanos.

3.6.2 Parâmetros do Algoritmo

O algoritmo SGD possui muitos parâmetros a serem definidos para melhorar

seu desempenho. Nesse sentido, após testes com diferentes valores, os mais

adequados são os apresentados em seguida.

• loss: como já discutido, a função de perda definida pelo parâmetro loss

foi escolhida como hinge.

• shuffle: configurado como True, esse parâmetro garante que as

amostras de treino sejam embaralhadas a cada imagem, de modo que

diferentes índices relativos às amostras estejam no grupo de treino

seguinte.

• random_state: também já discutido, garante a reprodutibilidade dos

resultados todas as vezes em que o código é executado.

• warm_start: configurado como True, reutiliza a solução do último

partial_fit como inicialização para o próximo.

• learning_rate: configurado como adaptive, mantém a taxa de

aprendizado inicial constante, desde que a perda continue a diminuir.

• eta0: definido como 0.01, indica a taxa de aprendizado inicial.

• class_weight: definido como balanced, retorna o peso associado a

cada classe, de modo a ajustá-los inversamente proporcional à

frequência das classes nos dados de referência. Esse parâmetro é

redefinido a cada imagem, contribuindo com o cálculo dos novos pesos

dos classificadores SVM.

• average: definido como True, computa a média dos pesos de descida

de gradiente estocástica ao longo de todas as atualizações de peso, e

armazena o resultado.

51

3.6.3 Treino do Modelo

Definido o classificador e o algoritmo SGD, o modelo deve ser treinado. Como

exposto anteriormente, o treinamento é feito em partes através do atributo

partial_fit(). Este recebe como parâmetros os dados de treino de X e y (X_treino e

y_treino), além das três classes (29 – azul - VRA, 76 – vermelho - SV, 150 – verde -

VF).

O processo de treinamento se repete até que todas as fotos tenham sido

analisadas.

3.6.4 Teste do Modelo

Após cada ciclo de treinamento, é obtida a exatidão do modelo através do

atributo score()37, que analisa todas as amostras de teste (X_teste e y_teste)

reunidas até o momento. Além disso, a precisão, o recall e o F1-Score também são

obtidos, mas através da função classification_report()38. Ao fim de todas as

classificações, a matriz de confusão é devolvida através da função

confusion_matrix39.

Em seguida, são apresentados os conceitos de matriz de confusão, exatidão,

precisão, recall e F1-Score.

37 Mais informações sobre o atributo em:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.
linear_model.SGDClassifier.score.

38 Mais informações sobre a função em:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html.

39 Mais informações sobre a função em:
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.score
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.score

52

3.6.4.1 Matriz de Confusão

A matriz de confusão é um método bastante utilizado para avaliar problemas

de classificação de imagem (KULKARNI; CHONG; BATARSEH, 2020). Ela

representa a contagem de valores previstos e reais. Através dela, consegue-se

calcular a exatidão, precisão, recall e F1-Score.

Considerando um problema de três classes como o em questão, a matriz será

de tamanho 3x3. A seguir, são ilustradas a mesma matriz de confusão, porém em

três imagens e configurações diferentes, de modo a facilitar a apresentação dos

cálculos para cada classe.

Figura 18 – Matriz de confusão considerando cada uma das três classes.

53

Fonte: Compilação do autor.

Das figuras apresentadas, TP significa True Positive e indica a quantidade de

amostras previstas como dentro da classe e que de fato pertencem a ela. Por outro

lado, FP, que significa False Positive, indica as amostras previstas como

pertencentes a determinada classe, mas que na verdade não são. Além disso, FN

(False Negative) indica as amostras que não foram classificadas em uma classe

específica, mas que na verdade pertencem a ela. Por fim, TN, True Negative, indica

as amostras que não foram classificadas em uma classe específica e que de fato

não pertencem a ela. As classes 1, 2 e 3 representam, respectivamente, VF, VRA e

SV (Vegetação de Floresta, Vegetação Rasteira e Arbustos, e Sem Vegetação, como

já apresentado).

3.6.4.2 Exatidão

Exatidão é uma métrica utilizada para avaliar modelos de classificação de

imagem. Ela define a porcentagem de amostras previstas com exatidão em relação

a todas as previsões (GOOGLE MACHINE LEARNING, 2023). A exatidão é

calculada para todas as classes, de modo a classificar o modelo como um todo. A

seguir apresenta-se a fórmula para calculá-la.

Acurácia=
[(TPVF+TPVRA+TP SV)+(TNVF+TNVRA+TN SV)]

[(TPVF+TPVRA+TPSV)+(TNVF+TN VRA+TN SV)+(FPVF+FPVRA+FPSV)+(FN VF+FNVRA+FNSV)]

54

3.6.4.3 Precisão

De acordo com Kulkarni, Chong e Batarseh (2020), precisão evidencia “o

quão exato é o modelo quanto a predizer valores positivos”. Assim, precisão pode

ser entendida como a exatidão das previsões tidas como positivas (Bruce, P.; Bruce,

A40, 2017 apud KULKARNI, Ajay; CHONG, Deri; BATARSEH, Feras A. Data

Democracy, At the Nexus of Artificial Intelligence, Software Development, and

Knowledge Engineering, 2020). Desse modo, precisão é expressa como segue.

Precisão=
(TPVF+TPVRA+TP SV)

[(TPVF+TPVRA+TPSV)+(FPVF+FPVRA+FPSV)]

3.6.4.4 Recall

Recall mede a força de um modelo prever resultados positivos, sendo

conhecido como a sensibilidade do modelo (KULKARNI; CHONG; BATARSEH,

2020). Em outras palavras, recall indica a proporção de previsões positivas em

relação a todos os resultados realmente positivos. A expressão a seguir define

matematicamente recall.

Recall=
(TPVF+TPVRA+TP SV)

[(TPVF+TPVRA+TPSV)+(FNVF+FN VRA+FN SV)]

3.6.4.5 F1-Score

F1-Score é outra medida para avaliar um modelo de classificação de imagem.

Nesse caso, ele reúne a precisão e o recall balanceados em uma média harmônica.

Assim, para a classificação de valores positivos, contribui para entender o equilíbrio

40 BRUCE, P., BRUCE, A. Practical Statisctics for Data Scientists: 50 Essential Concepts, O'Reilly
Media, 2017.

55

entre correção e cobertura de amostras do modelo (Alberto et al.41, 2018 apud

KULKARNI, Ajay; CHONG, Deri; BATARSEH, Feras A. Data Democracy, At the

Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering,

2020).

A medida pode ser expressa da seguinte forma, de modo que β seja igual a

um.

F β=(1+ β ²) Precisão⋅Recall
(β ²⋅Precisão)+Recall

⇒F1=2
Precisão⋅Recall
Precisão+Recall

41 ALBERTO, F. et al. Learning from Imbalanced Data Sets, Springer, 2018.

56

57

4 RESULTADOS

A seguir, são mostrados os resultados da performance do modelo de

classificação de imagem discutido nas seções anteriores. Além disso, cada um deles

será discutido nesta mesma seção.

4.1 EXECUÇÃO DO CÓDIGO

Embora o número de fotos a serem utilizadas para treinar o modelo era de

160, devido a problemas de capacidade do hardware foi necessário reduzi-lo. Assim,

o novo número de fotos treinadas foi 120, tendo, portanto, 62.208.000 pixeis como

amostras (49.766.400 para o treino e 12.441.600 para o teste do modelo).

Ainda, foi necessário utilizar outro computador com mais capacidade que o

anterior (20 GB de RAM; quatro núcleos no processador), tendo o novo 32 GB de

RAM e doze núcleos no processador. No entanto, a quantidade de RAM ainda era

insuficiente para as 160 fotos, o que levou à redução a 120 imagens, como

discutido, uma vez que a performance do computador atingia seu máximo e o código

colapsava.

Após a redução, o código conseguiu ser concluído, e os resultados de

performance do modelo, assim como ele próprio, obtidos. O código completo para

gerar o modelo e seus resultados encontra-se no Apêndice A.

4.2 MATRIZ DE CONFUSÃO DO MODELO

A matriz de confusão expõe a quantidade de amostras classificadas de

acordo com a previsão do modelo e também com a classificação real. A partir dela, é

possível obter indicadores como exatidão, precisão, recall e o F1-Score, como

58

explicado anteriormente. A seguir, a matriz de confusão após todo o treinamento do

modelo é apresentada.

Figura 19 - Matriz de confusão do modelo.

Fonte: Compilação do autor.

A partir da Figura 19 e do exposto na seção 3.6.4.1, é possível verificar que

Vegetação de Floresta (VF) teve a maior proporção de acertos quanto aos valores

reais (79%). Por outro lado, Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação

(SV) tiveram previsões corretas baixas (65% e 35%, respectivamente).

Além disso, quanto à SV, a maior parte das previsões indicaram

incorretamente a classe VF, e parte considerável em VRA. Isso pode ter acontecido

devido a grande abrangência de intensidades de cor e brilho dos pixeis que de fato

pertencem a essa classe. Um bom exemplo é a diferença entre uma estrada de terra

(comum nas fotos), com intensidade de brilho alta, e a sombra de uma edificação.

Nesse sentido, como as florestas tendem a ser escuras, a sombra seria classificada

como VF e não SV.

59

 Ainda, boa parte das previsões de VRA que na verdade eram VF (20%) e de

VF que eram na verdade VRA (27%) foram classificadas incorretamente. Isso pode

ter acontecido pela semelhança de intensidade e brilho das duas classes, uma vez

que a grama, se estiver mais escura na foto, pode ser classificada como VF, e se a

floresta estiver mais clara, pode ser confundida com VRA.

4.3 EXATIDÃO DO MODELO

Como discutido na seção 3.6.4.2, a exatidão evidencia a quantidade de

previsões corretas em relação a todas realizadas. Em seguida, apresenta-se o

gráfico da Figura 20, que mostra os valores de exatidão a cada iteração de treino do

modelo, com o acumulado dos dados de teste até o momento, relativo à quantidade

de fotos utilizadas até então.

Figura 20 - Exatidão x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

60

Como é possível perceber, de forma geral, a exatidão com até 35 fotos

permanece acima de 70%, com uma queda contínua até 40 imagens, atingindo algo

entre 70% e 67%. Esse comportamento pode ter sido provocado pela sequência

dessas cinco imagens que contêm ou apenas uma classe, ou duas. Além disso, nas

imagens com duas classes, existem regiões de floresta e rio e, como a coloração do

rio é escura, é possível que o modelo tenha confundido com a coloração da floresta.

A Figura 21 apresenta uma dessas cinco fotos e sua classificação diante do modelo.

Figura 21 – Rio e floresta são confundidos na versão classificada pelo modelo.

Fonte: Google Earth (2023); Compilação do autor.

Ademais, esse comportamento de queda também acontece entre 73 e 96

imagens, intervalo com muitas fotos com apenas uma ou duas classes. A Figura 22

mostra um exemplo com apenas uma classe a ser definida (Vegetação de Floresta)

e que possui pixeis de outras classes.

61

Figura 22 – Imagem com apenas floresta sendo classificada pelo modelo com outras classes.

Fonte: Google Earth (2023); Compilação do autor.

Assim, é possível inferir que o modelo não seja tão exato na previsão de

imagens que contenham menos de três classes, além de ser bastante sensível à

intensidade das cores presentes nas imagens originais, como visto no exemplo de

foto da Figura 21. Desse modo, a exatidão média final convergiu para 66,62%, valor

que não infere tanta confiança no modelo, mas que indica que a classificação

correta ocorre para a maior parte dos pixeis de uma imagem.

4.4 PRECISÃO DO MODELO

Em resumo, a precisão indica a proporção de previsões positivas corretas

para uma classe em relação a todas as previsões positivas, corretas e incorretas. A

Figura 23 mostra as curvas de precisão para cada uma das três classes, além da

previsão média de todas elas em conjunto.

62

Figura 23 - Precisão x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

A partir do gráfico, é possível perceber que apesar do início, VF e VRA se

mantiveram praticamente constantes, com amplitude baixa, e terminaram próximas

de 70%. Isso indica que das previsões positivas para essas classes em relação a

todas as previsões positivas para as mesmas classes, ainda que incorretas, o

modelo teve boa performance. No entanto, a curva de SV teve comportamento

bastante oscilatório, com alta amplitude. Embora tenha alcançado um patamar

próximo de 68% entre 95 e 110 fotos, terminou em um patamar muito mais baixo.

Isso pode ter acontecido devido à presença de fotos a partir da 110ª com claridade

acima do comum, possivelmente devido a uma nuvem ou até mesmo falha do

equipamento que fotografou as imagens. Abaixo existem dois exemplos de fotos de

floresta usados no treinamento com claridades diferentes.

63

Figura 24 - Exemplo de imagens diferentes de floresta, com claridades diferentes.

Fonte: Google Earth (2023).

Por fim, devido à queda da curva de SV, a precisão média também sofreu o

impacto, terminando em 64%.

4.5 RECALL DO MODELO

O recall, como já definido, representa a proporção das previsões positivas

para uma classe em relação a todas classificações verdadeiras para a mesma

classe. A Figura 25 mostra os valores de recall para cada classe, assim como a

média de todas elas.

64

Figura 25 - Recall x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

Pode-se visualizar que a curva de VF teve comportamento inverso da de

VRA: enquanto a primeira subiu, alcançando um patamar próximo dos 80%, a outra

caiu de 80% até 66%. É possível que esse comportamento tenha ficado em

evidência devido a semelhança nas tonalidades das duas classes, como já discutido.

Além disso, a classe SV teve comportamento bastante inferior ao esperado:

desde o início teve queda quase que constante até convergir para algo próximo de

35%. Assim, comprova-se que a previsão para essa classe teve muitas falhas, como

exposto na seção 4.2, quando dito que as classes VF e VRA obtiveram grande parte

das previsões que deveriam ter sido alocadas em SV. O motivo para tal pode ter sido

a grande variedade de intensidade dos pixeis pertencentes a essa classe, como já

relatado.

 Ademais, o recall médio manteve-se praticamente constante apesar da

grande queda da curva SV. Isso se deve à compensação tanto de VF quanto de

VRA.

65

4.6 F1-SCORE DO MODELO

O F1-Score indica a média harmônica entre a previsão e o recall. Nesse

sentido, pode-se entender melhor o balanço dessas duas medidas, equilibradas. A

Figura 26 mostra o gráfico de F1-Score para cada uma das classes e a média entre

elas.

Figura 26 - F1-Score x Acumulado de dados de teste por imagens treinadas.

Fonte: Compilação do autor.

É possível perceber que todas as quatro curvas possuem amplitudes mais

amenas, permanecendo de certa maneira constantes. Além disso, como esperado, a

curva de SV permaneceu abaixo de 50%. Por outro lado, as curvas de VF e VRA

tiveram comportamento mais equilibrado e acima de 70%. O F1-Score médio

convergiu em 61%.

66

67

5 APLICAÇÃO

Após o treino e a obtenção dos resultados do modelo, ocorre sua

implementação em um hardware embarcado. Um hardware embarcado consiste em

um conjunto de componentes computacionais e eletrônicos integrados em um chip,

como memórias, GPU, CODECs e interfaces de conectividade, interconectados

através de barramentos com alta taxa de transferência, formando um System-on-

Chip – SoC (BARTÍK; PICHLOVÁ; KUBÁTOVÁ, 2016), associado a uma placa base.

A placa base é responsável por receber o SoC como seu controlador, de modo a

oferecer os receptores de entrada e saída (E/S) dos periféricos, como conectores de

cabo de rede, USB, áudio, microfone, além dos GPIOs (General-Purpose

Input/Output – Entradas/Saídas de Uso Geral) para uso de diversos protocolos de

comunicação, como CAN, I2S, PWM e mais.

Assim, para que o usuário final utilize o hardware embarcado com mais

facilidade, implementando uma aplicação em seu módulo (SoC), é necessário um

software embarcado. O software embarcado nada mais é que o sistema operacional

do hardware embarcado, de modo a servir de intermediário na comunicação entre os

componentes do hardware e a aplicação do usuário final. Dessa forma, o usuário

não precisa se preocupar com conceitos de programação de baixo nível para

conseguir se comunicar diretamente com o hardware.

Com isso, quando há um hardware embarcado com um software embarcado

associado, tem-se um sistema embarcado. Nesse sentido, o modelo de ML criado é

implementado em um sistema embarcado, como mostrado nas seções a seguir.

5.1 VISÃO GERAL DO SISTEMA EMBARCADO UTILIZADO

O hardware utilizado foi um SoC Apalis iMX8 Quad Max, com 4 GB de RAM,

com disponibilidade de Wi-Fi e Bluetooth e operacionalidade em temperatura

industrial, versão V1.1 C. Associado a ele, uma placa base Ixora, versão V1.1 A,

68

com diversas E/S para periféricos. Ambos os componentes foram produzidos pela

empresa Toradex.

5.1.1 Apalis iMX8QM

De acordo com a página da Toradex (2023-a), o módulo Apalis iMX8 Quad

Max possui dois núcleos Arm Cortex A-72, além de quatro núcleos Arm Cortex A-53.

Ademais, possui dois núcleos de microcontroladores Arm Cortex M4F com FPU. O

módulo possui alta performance para aplicações de visão computacional devido a

sua dual GPU GC7000. Ainda, possui memória flash de 32 GB eMMC, além dos já

mencionados 4 GB de RAM LPDDR4 (64 Bit). A Figura 27 ilustra o módulo Apalis

iMX8QM.

Figura 27 - Módulo Apalis iMX8QM 4GB WB IT.

Fonte: Toradex (2023-a). Disponível em: https://www.toradex.com/pt-br/computer-on-modules/apalis-

arm-family/nxp-imx-8. Acesso em: 29 nov.2023.

https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8
https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8

69

5.1.2 Placa base Ixora

A placa base Ixora tem fator de forma pequeno e otimizado, possuindo

suporte para diversas interfaces industriais (TORADEX, 2023-b). Seu tamanho é

ideal para projetos em que o espaço é limitado, como o acoplamento em um drone.

Além disso, a placa suporta interfaces de alta velocidade e multimídias. Abaixo na

Figura 28 há uma foto da placa base Ixora.

Figura 28 - Placa base Ixora.

Fonte: Toradex (2023-b). Disponível em: https://www.toradex.com/pt-br/products/carrier-board/ixora-

carrier-board. Acesso em: 30 nov. 2023.

5.1.3 Torizon OS

Segundo a página da Toradex (2023-c), Torizon OS é:

[…] uma imagem mínima de Linux embarcado que apresenta, dentre outros
serviços essenciais, processamento em contêiner e componentes para
atualizações offline seguras e remotas (Over-the-air – OTA).

https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board
https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board

70

Nesse sentido, Torizon OS é o software embarcado, sendo o sistema

operacional do hardware embarcado. Assim, havendo a integração com contêineres,

o processo de produção de aplicações torna-se mais simples.

5.2 CONTEINERIZAÇÃO DA APLICAÇÃO

Uma das plataformas mais comuns de se trabalhar com contêineres é o

Docker. De acordo com sua página (DOCKER, 2023), um contêiner é:

[...] uma unidade padrão de software que empacota o código e todas as
suas dependências, de modo que a aplicação seja executada rapida e
seguramente de um ambiente computacional para outro. Uma imagem
contêiner Docker é um pacote de software leve, autônomo e executável que
inclui todo o necessário para executar uma aplicação: código,
processamento, ferramentas do sistema, bibliotecas do sistema e
configurações.

Assim, contêineres permitem criar o ambiente necessário para uma aplicação

sem interferir diretamente no sistema operacional, como por exemplo, instalando

bibliotecas diretamente nele. Com isso, utilizar contêineres se torna propício no caso

deste trabalho, uma vez que a aplicação requer diversas configurações que não

existem no sistema operacional base, como as bibliotecas necessárias para sua

execução. Além disso, o uso de um contêiner também se faz útil a partir do momento

em que é necessário converter a aplicação de uma arquitetura para outra (neste

caso, da arquitetura x86 64 bit – arquitetura do computador - para arm64 –

arquitetura do módulo embarcado). Abaixo há uma representação da estrutura geral

do sistema embarcado utilizando contêiner, onde Infrastructure corresponde ao

hardware embarcado (módulo) e Host operating system ao sistema operacional

(Torizon OS).

71

Figura 29 - Estrutura geral de um sistema embarcado utilizando um contêiner Docker.

Fonte: Docker, 2023. Disponível em: https://www.docker.com/resources/what-container/. Acesso em:

30 nov. 2023.

Para criar um contêiner para a aplicação, é necessário utilizar um arquivo

Dockerfile. Nele, existem todas as configurações necessárias para o funcionamento

da aplicação, desde a instalação das ferramentas da linguagem de programação

utilizada, de bibliotecas específicas para a aplicação, até o compilador cruzado para

converter a aplicação de uma arquitetura para outra.

Tendo o Dockerfile, é necessário executar o comando de build e logo push

para fazer o upload do contêiner no DockerHub. A seguir são mostrados os

comandos executados em um terminal de um computador com Ubuntu 22.04.

cd <pasta_com_Dockerfile_e_aplicação>
docker build -t <login_DockerHub>/<nome_do_contêiner>:<tag_de_versão> .

docker login <login_DockerHub>

docker push <login_DockerHub>/<nome_do_contêiner>:<tag_de_versão>

https://www.docker.com/resources/what-container/

72

5.3 RESULTADO DA APLICAÇÃO

Além do contêiner da aplicação, para evidenciar o resultado de forma visual,

foi executado outro contêiner para receber a interface gráfica. Trata-se do Weston,

que utiliza o protocolo Wayland42. Assim, foi utilizado um contêiner fornecido pela

Toradex43.

Com isso, para executar ambos os contêineres, deve-se utilizar o arquivo

docker-compose. Portanto, é necessário copiar o arquivo para o módulo e depois,

acessando seu terminal, executá-lo, como segue.

#No terminal do computador
cd <pasta_com_docker-compose>

scp docker-compose.yml torizon@<IP_do_módulo>:<pasta_de_destino>

#No terminal do módulo
docker-compose -f docker-compose.yml up

Assim, inserindo na aplicação uma interface gráfica através das ferramentas

visuais do Qt44, foi possível mostrar a foto original ao lado de sua imagem

classificada, como a seguir. A aplicação é visualizada através de um visualizador

VNC (Virtual Networking Computing).

42 Para mais informações, acesse:
https://developer.toradex.com/torizon/provided-containers/working-with-weston-on-torizoncore/.

43 Mais informações sobre os contêineres disponíveis em:
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-
containers.

44 Mais informações sobre o Qt com Python em: https://doc.qt.io/qtforpython-6/.

https://doc.qt.io/qtforpython-6/
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-containers
https://developer.toradex.com/torizon/provided-containers/debian-containers-for-torizon/#debian-containers
https://developer.toradex.com/torizon/provided-containers/working-with-weston-on-torizoncore/

73

Figura 30 - Resultado visual da aplicação de classificação de imagem.

Fonte: Compilação do autor.

É importante mencionar que para executar a reprodução visual em um

visualizador VNC pelo computador, foi necessário também conectar uma tela através

do conector HDMI da placa base Ixora.

Vale lembrar que todos os códigos e arquivos utilizados para compor este

trabalho estão disponíveis no GitHub a seguir para que os resultados obtidos

possam ser reproduzidos: https://github.com/PauloTavernaro/classificacao-imagens.

https://github.com/PauloTavernaro/classificacao-imagens

74

75

6 CONCLUSÃO

O propósito deste trabalho foi fornecer uma abordagem de classificação de

imagem por meio de segmentação de fotos da região amazônica, mais

especificamente da cidade de São Félix do Xingu-PA. Nesse sentido, o objetivo era

evidenciar elementos dessas fotos de acordo com três classes: Vegetação de

Floresta (VF), Vegetação Rasteira e Arbustos (VRA) e Sem Vegetação (SV). Assim,

através de uma análise temporal da mesma área geográfica, seria possível constatar

alterações do ambiente, sugerindo, por exemplo, a presença de desmatamento em

regiões de floresta, auxiliando o poder público e autoridades competentes na busca

de soluções para o problema.

Como visto a partir da seção de resultados, a performance geral do modelo

de machine learning para classificação das imagens não foi tão interessante. Com

uma exatidão de 66,62%, não há garantia de que grande parte das fotos a serem

analisadas pelo modelo sejam representadas com precisão suficiente para

determinar as fronteiras de cada uma das classes em cada imagem. As Figuras 31 e

32 ilustram o comportamento do modelo frente a fotos não treinadas (portanto

desconhecidas para ele) em relação a sua versão original. Enquanto a Figura 31

apresenta uma boa detecção, a Figura 32 evidencia que para determinadas

intensidades de brilho e cor, além de texturas, o modelo apresenta falhas.

Figura 31 – Exemplo de uma boa detecção de classes pelo modelo.

Fonte: Google Earth (2023); Compilação do autor.

76

Figura 32 – Exemplo de uma detecção falha pelo modelo (rio confundido com floresta).

Fonte: Google Earth (2023); Compilação do autor.

Nesse sentido, é possível que esse comportamento tenha acontecido devido

a dois fatores. O primeiro diz respeito à conversão das imagens originais da escala

RGB para a escala de cinza. Nesse processo, três canais de cores foram

redimensionados em apenas um, o que pode ter diminuído significantemente a

quantidade de informações de cada pixel a cada filtro. O segundo fator leva em

consideração à estratégia adotada para a análise das imagens. Em vez de analisá-

las por inteiro, o processo de classificação considerou cada pixel individualmente,

fora do contexto da foto, além de redefinir o hiperplano e suas margens a cada

iteração a partir de apenas um pixel dos 414.720 (parcela de treino de cada imagem)

em vez de, por exemplo, considerar cada amostra como uma imagem em si.

Outro ponto a ser considerado é a qualidade das fotos obtidas para treinar o

modelo. Como discutido, as fotos obtidas do Google Earth tinham distância do solo

de 600 m, além de terem qualidade insuficiente para a análise deste trabalho, pois

com baixa resolução, a dificuldade em definir regiões de fronteira em uma foto

aumenta. Assim, uma possibilidade seria registrar as fotos a partir de uma câmera

hiperespectral acoplada em um drone, cuja capacidade de captura compreende

dezenas de bandas do espectro eletromagnético, fornecendo muito mais

informações do que as imagens em RGB devido à alta resolução espectral

(PERERA; PREMACHANDRA; KAWANAKA, 2023). Dessa forma, observando o

grau de refletância do ambiente analisado a uma distância menor do solo, é possível

distinguir cada um dos componentes de uma imagem em uma determinada banda

do espectro eletromagnético. Com isso, problemas enfrentados quanto à

semelhança de intensidades de brilho (como no caso de sombra de construções,

77

intensidade de brilho de florestas e de rios) poderiam ser resolvidos. A Figura 32

mostra um exemplo da diferença espectral na análise do solo e de plantações de

batata, chá e repolho para diferentes bandas. É evidente a diferença desses quatro

elementos entre as bandas de 738 e 834 nm.

Figura 33 - Composição espectral de imagens de solo e plantações de batata, chá e repolho.

Fonte: Compilação do autor45 .

Por outro lado, apesar da performance do modelo não ter atingido o nível de

excelência esperado, foi possível implementá-lo com sucesso no módulo

embarcado. Assim, a conversão de arquitetura do binário do modelo, além de toda a

estrutura de conteinerização foram executadas de maneira efetiva.

Com isso, sendo possível aplicar o modelo em um sistema embarcado, torna-

se mais próxima a proposta de implementar o módulo embarcado com o modelo de

ML em um drone para que o processo das imagens aconteça logo após a captura

45 Imagem retirada de PERERA, C. J.; PREMACHANDRA, C.; KAWANAKA, H. Comparison of Light
Weight Hyperspectral Camera Spectral Signatures with Field Spectral Signatures for Agricultural
Applications, 2023, com edição.

78

delas. Ainda, sendo possível implementar uma câmera hiperespectral para realizar a

captura das imagens, após o processamento delas e a análise da melhor banda

espectral, espera-se que a performance do modelo de ML seja aperfeiçoada e sua

exatidão aumentada. Portanto, o objetivo final de analisar uma mesma área

geográfica ao longo do tempo terá maior precisão e assim, maior veracidade dos

dados em estudo.

79

APÊNDICE A – CÓDIGO COMENTADO DA OBTENÇÃO DO MODELO
DE MACHINE LEARNING

import numpy as np
import cv2
import pandas as pd
import pickle
import os
from skimage.filters import roberts, sobel_h, sobel_v, prewitt_h, prewitt_v
from scipy import ndimage as nd
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.utils import compute_class_weight
from skimage.segmentation import chan_vese
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import classification_report

#Filtro Gabor, que resulta em 48 versões de filtro com diferentes perfis de
intensidade e foco

def filtro_Gabor(imagem):
 df = pd.DataFrame()
 index = 1
 nucleos = []
 for theta in range(1,4):
 theta = theta / 4 * np.pi
 for sigma in (1,3):
 for lamda in np.arange(0, np.pi, np.pi/4):
 for gama in (0.05, 0.5):
 gabor_index = 'Gabor' + str(index)
 tamanho_nucleo = 2
 nucleo = cv2.getGaborKernel((tamanho_nucleo,tamanho_nucleo),
sigma, theta, lamda, gama, 0, ktype=cv2.CV_32F)
 nucleos.append(nucleo)
 imagem_filtrada = cv2.filter2D(imagem, cv2.CV_8UC3, nucleo)
 imagem_redimensionada = imagem_filtrada.reshape(-1)
 df_red = pd.DataFrame(imagem_redimensionada, columns =
[gabor_index])
 df = pd.concat([df, df_red], axis = 1)
 index += 1
 return df

#Função que retorna como atributos de cada pixel o próprio valor de cada um deles

def Original(imagem):
 original_redimensionado = imagem.reshape(-1)
 df_red = pd.DataFrame(original_redimensionado, columns = ['Pixels Originais'])

80

 return df_red

#Filtro Canny, detecta bordas

def Canny_Edge(imagem):
 magnitude = cv2.Canny(imagem, 100, 200)
 #Padronizando os dados entre 0 e 255
 magnitude = magnitude * 255/np.max(magnitude)
 #Arredondando os dados
 magnitude = np.round(magnitude)
 #Convertendo para inteiro
 magnitude = magnitude.astype(int)
 canny_redimensionado = magnitude.reshape(-1)
 df_red = pd.DataFrame(canny_redimensionado, columns = ['Canny Edge'])

 return df_red

#Filtro Roberts, detecta bordas

def Roberts(imagem):
 magnitude = roberts(imagem)
 #Padronizando os dados entre 0 e 255
 magnitude *= 255/np.max(magnitude)
 #Arredondando os dados
 magnitude = np.round(magnitude)
 #Convertendo para inteiro
 magnitude = magnitude.astype(int)
 roberts_redimensionado = magnitude.reshape(-1)
 df_red = pd.DataFrame(roberts_redimensionado, columns = ['Roberts'])

 return df_red

#Filtro Sobel, detecta bordas

def Sobel(imagem):
 #Calculando o gradiente Sobel para cada direção (horizontal e vertical)
 sobel_x = sobel_h(imagem)
 sobel_y = sobel_v(imagem)
 #Padronizando os dados entre 0 e 255
 magnitude = np.sqrt(sobel_x**2 + sobel_y**2)
 magnitude *= 255/np.max(magnitude)
 #Arredondando os dados
 magnitude = np.round(magnitude)
 #Convertendo para inteiro
 magnitude = magnitude.astype(int)
 sobel_redimensionado = magnitude.reshape(-1)
 df_red = pd.DataFrame(sobel_redimensionado, columns = ['Sobel'])

81

 return df_red

#Filtro Prewitt, detecta bordas

def Prewitt(imagem):
 #Calculando o gradiente Prewitt para cada direção (horizontal e vertical)
 prewitt_x = prewitt_h(imagem)
 prewitt_y = prewitt_v(imagem)
 #Padronizando os dados entre 0 e 255
 magnitude = np.sqrt(prewitt_x**2 + prewitt_y**2)
 magnitude *= 255/np.max(magnitude)
 #Arredondando os dados
 magnitude = np.round(magnitude)
 #Convertendo para inteiro
 magnitude = magnitude.astype(int)
 prewitt_redimensionado = magnitude.reshape(-1)
 df_red = pd.DataFrame(prewitt_redimensionado, columns = ['Prewitt'])

 return df_red

#Filtro Gaussiano, aplica desfoque nas imagens

def Gaussiana(imagem, sigma):
 imagem_gaussiana = nd.gaussian_filter(imagem, sigma=sigma)
 gaussiana_redimensionada = imagem_gaussiana.reshape(-1)
 df_red = pd.DataFrame(gaussiana_redimensionada, columns =
[f'Gaussiana_s{sigma}'])

 return df_red

#Filtro Mediana, reduz ruído

def Mediana(imagem):
 imagem_mediana = nd.median_filter(imagem, size=3)
 mediana_redimensionada = imagem_mediana.reshape(-1)
 df_red = pd.DataFrame(mediana_redimensionada, columns = ['Mediana'])

 return df_red

#Filtro Chan-Vese, detecta regiões da imagem

def Chan_Vese(imagem):
 imagem_chan_vese = chan_vese(imagem, mu=0.25, lambda1=1, lambda2=1,
tol=1e-3, max_num_iter=200, dt=0.5, init_level_set="checkerboard",
extended_output=True)
 array_chan_vese = np.array(imagem_chan_vese[1])
 #Normalizando os dados

82

 array_chan_vese *= 255/np.max(array_chan_vese)
 #Arredondando os dados
 array_chan_vese = np.round(array_chan_vese)
 #Convertendo para inteiro
 array_chan_vese = array_chan_vese.astype(int)
 chan_vese_redimensionada = array_chan_vese.reshape(-1)
 df_red = pd.DataFrame(chan_vese_redimensionada, columns = ['Chan_Vese'])

 return df_red

#Função que aplica os filtros a cada imagem, e organiza seus pixeis em um
dataframe de dimensão
#518.400 (arranjos de pixeis) por 56 (quantidade de atributos de cada arranjo), que
será anexado
#em um dicionário cuja chave é sua imagem

def definir_filtros(caminho_imagens):
 #Definindo o dicionário que terá todos os dataframes de cada imagem
 dict_features = {}

 i = 1

 for imagem_treino in sorted(os.listdir(caminho_imagens)):

 #Definindo o dataframe final de cada imagem
 dados_todos_filtros = pd.DataFrame()
 #Garantindo que os dataframes parciais de cada filtro sejam reiniciados a cada
loop
 df_gabors = pd.DataFrame()
 df_original = pd.DataFrame()
 df_canny = pd.DataFrame()
 df_roberts = pd.DataFrame()
 df_sobel = pd.DataFrame()
 df_prewitt = pd.DataFrame()
 df_gaussiana_s3 = pd.DataFrame()
 df_gaussiana_s7 = pd.DataFrame()
 df_mediana = pd.DataFrame()
 df_chan_vese = pd.DataFrame()

 #Lendo a imagem
 imagem = cv2.imread(caminho_imagens + imagem_treino)

 #Garantindo que tenha o tamanho de 960x540 px
 imagem = cv2.resize(imagem, (960, 540))

 #Como a biblioteca OpenCV lê as imagens na escala BGR, elas são
primeiramente convertidas
 #em RGB, e depois em escala de cinza

83

 imagem_RGB = cv2.cvtColor(imagem, cv2.COLOR_BGR2RGB)
 imagem_tons_cinza = cv2.cvtColor(imagem_RGB, cv2.COLOR_RGB2GRAY)

 #Aplicando os filtros para cada imagem
 df_gabors = filtro_Gabor(imagem_tons_cinza)
 df_original = Original(imagem_tons_cinza)
 df_canny = Canny_Edge(imagem_tons_cinza)
 df_roberts = Roberts(imagem_tons_cinza)
 df_sobel = Sobel(imagem_tons_cinza)
 df_prewitt = Prewitt(imagem_tons_cinza)
 df_gaussiana_s3 = Gaussiana(imagem_tons_cinza, 3)
 df_gaussiana_s7 = Gaussiana(imagem_tons_cinza, 7)
 df_mediana = Mediana(imagem_tons_cinza)
 df_chan_vese = Chan_Vese(imagem_tons_cinza)

 #Reunindo todos os dataframes de cada filtro um outro dataframe com todos
os atributos
 #de cada filtro alinhados horizontalmente
 dados_todos_filtros = pd.concat([df_gabors, df_original, df_canny, df_roberts,
df_sobel, df_prewitt, df_gaussiana_s3, df_gaussiana_s7, df_mediana,
df_chan_vese], axis=1)

 #Preenchendo o dicionário com o dataframe anterior e sua respectiva imagem
 dict_features.update({f'Imagem_{i}' : dados_todos_filtros})

 i += 1

 return dict_features

#Função que recebe cada imagem de referência e organiza seus pixeis em um
dataframe de dimensão
#518.400 (pixeis) por 1 (atributo de classificação), que será anexado em um
dicionário cuja
#chave é sua imagem

def definir_referencia(caminho_imagens):
 #Definindo o dicionário que terá todos os dataframes de cada imagem
 dict_ref = {}

 j = 1

 for imagem_referencia in sorted(os.listdir(caminho_imagens)):

 #Garantindo que o dataframe final de cada imagem seja reiniciado a cada loop
 dados_categorizadas = pd.DataFrame()

 #Lendo a imagem
 imagem = cv2.imread(caminho_imagens + imagem_referencia)

84

 #Garantindo que tenha o tamanho de 960x540 px
 imagem = cv2.resize(imagem, (960, 540))

 #Como a biblioteca OpenCV lê as imagens na escala BGR, elas são
primeiramente convertidas
 #em RGB, e depois em escala de cinza, ainda que as imagens de referência já
estejam na
 #escala de cinza
 imagem_RGB = cv2.cvtColor(imagem, cv2.COLOR_BGR2RGB)
 imagem_tons_cinza = cv2.cvtColor(imagem_RGB, cv2.COLOR_RGB2GRAY)

 #Redimensionando cada imagem para ter apenas uma dimensão
 dados_imagem_ref = imagem_tons_cinza.reshape(-1)

 #Organizando os dados de cada imagem em um dataframe
 dados_categorizadas = pd.DataFrame(dados_imagem_ref, columns =
['Imagens de Referência'])

 #Preenchendo o dicionário com o dataframe anterior e sua respectiva imagem
 dict_ref.update({f'Imagem_Ref_{j}':dados_categorizadas})

 j += 1

 return dict_ref

#Função que divide cada dataframe de X e y em grupos de treino e teste para que
então o modelo seja
#treinado em etapas, ou seja, a partir dos dados de cada imagem para economizar
armazenamento de RAM

def divisao_treino_teste(X, y, model, i, todos_X_teste, todos_y_teste):

 #Divide os valores de X e y em grupos de treino e teste. A parcela de teste é de
20%
 #Além disso, "random_state" garante a reprodutibilidade
 X_treino, X_teste, y_treino, y_teste = train_test_split(X, y, test_size=0.2,
random_state=1)

 #Convertendo o dataframe em arranjos NumPy
 X_treino = X_treino.to_numpy()
 y_treino = y_treino.to_numpy().ravel()

 #Treinando o modelo em partes (dados de uma imagem por vez)
 #As classes correspondem às classificações:
 #29: Vegetação Rasteira e Arbustos
 #76: Sem Vegetação
 #150: Vegetação de Floresta

85

 model.partial_fit(X_treino, y_treino, classes=[29, 76, 150])

 #Convertendo o dataframe em arranjos NumPy
 X_teste = X_teste.to_numpy()
 y_teste = y_teste.to_numpy().ravel()

 #Concatenando todos os dados de teste de todas as fotos até o momento
 #para que o modelo resultante de todas as iterações até então avalie todas
 #as informações de teste até o momento
 if i == 1:
 todos_y_teste = y_teste
 todos_X_teste = X_teste
 else:
 todos_y_teste = np.append(todos_y_teste, y_teste)
 todos_X_teste = np.append(todos_X_teste, X_teste, axis=0)

 #Obtendo a exatidão do modelo
 print(f"Exatidão depois da Imagem {i} = {model.score(todos_X_teste,
todos_y_teste)}")

 #Realizando a previsão de resposta do modelo frente a todos os dados de teste
de X até então
 previsao = model.predict(todos_X_teste)

 #Obtendo o relatório de classificação, o qual retorna valores como precisão e
recall
 print(f"Relatório de Classificação depois da Imagem {i}: \
n{metrics.classification_report(todos_y_teste, previsao)}\n")

 return model, todos_X_teste, todos_y_teste

###

#Função principal

if __name__ == "__main__":

 #Definindo dataframes para captar os dados das imagens
 todos_original = pd.DataFrame()
 todos_categorizadas = pd.DataFrame()
 todos_X_teste = pd.DataFrame()
 todos_y_teste = []
 todos_y_teste = np.array(todos_y_teste)

 #Definindo os caminhos para encontrar as fotos
 caminho_imagens_original = '/home/user/Área de Trabalho/Originais/'

86

 caminho_imagens_categorizadas = '/home/user/Área de Trabalho/Referencia/'

 #Transformando os dados em listas para facilitar a iteração
 dados_original = list(definir_filtros(caminho_imagens_original).values())
 dados_categorizadas =
list(definir_referencia(caminho_imagens_categorizadas).values())

 #Iteração de cada foto pelo treino e teste do modelo
 for i, (X, y) in enumerate(zip(dados_original, dados_categorizadas), 1):

 if i == 1:

 #Peso das classes sendo definidos
 peso = compute_class_weight(class_weight='balanced',
classes=np.unique(y), y=y.to_numpy().ravel())

 modelo_inicial = lambda peso, y : SGDClassifier(loss='hinge', shuffle=True,
random_state=1, warm_start=True, learning_rate='adaptive', eta0 = 0.01,
class_weight=dict(zip(np.unique(y), peso)), average=True)

 modelo_pronto, todos_X_teste, todos_y_teste = divisao_treino_teste(X, y,
modelo_inicial(peso, y), i, todos_X_teste, todos_y_teste)

 else:

 #Peso das classes sendo definidos
 peso = compute_class_weight(class_weight='balanced',
classes=np.unique(y), y=y.to_numpy().ravel())

 modelo_pronto.set_params(**{'class_weight' : dict(zip(np.unique(y), peso))})

 modelo_pronto, todos_X_teste, todos_y_teste = divisao_treino_teste(X, y,
modelo_pronto, i, todos_X_teste, todos_y_teste)

 #Calculando a matriz de confusão final
 previsao = modelo_pronto.predict(todos_X_teste)

 print(f'\nMatriz de Confusão: \n{metrics.confusion_matrix(todos_y_teste, previsao,
labels=[29, 76, 150])}')

 #Salvando o modelo treinado
 caminho_modelo = "/home/user/Área de Trabalho/Modelo_ML"
 pickle.dump(modelo_pronto, open(caminho_modelo, 'wb'))

87

REFERÊNCIAS

. Biomas brasileiros. 1. ed. São Paulo: Oficina de Textos, 2016. E-book. Disponível
em: https://plataforma.bvirtual.com.br. Acesso em: 23 out. 2023.

. Secas na Amazônia: causas e consequências. 1. ed. São Paulo: Oficina de Textos,
2013. E-book. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 23 out.
2023.

1.4. Support Vector Machines. scikit learn, 2023-b. Disponível em: https://scikit-
learn.org/stable/modules/svm.html. Acesso em: 20 nov. 2023.

AKAL, Orhan; BARBU, Adrian. Learning Chan-Vese, Florida State University, 2019.
Disponível em: https://ani.stat.fsu.edu/~abarbu/papers/2019-LearnCV-ICIP.pdf.
Acesso em: 19 nov. 2023.

ALSHEHRI, M.; OUADOU, A.; SCOTT, G. Deforestation Detection in the Brazilian
Amazon Using Transformer-based Networks, 2023 IEEE Conference on Artificial
Intelligence (CAI), Santa Clara, CA, USA, 2023, pp. 292-293, doi:
10.1109/CAI54212.2023.00130. Disponível em:
https://ieeexplore.ieee.org/document/10194966. Acesso em: 29 nov. 2023.

AMORIM, Antonio; POLASTRI, Maria Julia. Evaluation of Edge Detection Filters
Applied to Corroded Steel Sheets, 2020. International Journal of Science and
Research (IJSR). 5. 898-902. Disponível em:
https://www.researchgate.net/publication/342820766_Evaluation_of_Edge_Detection
_Filters_Applied_to_Corroded_Steel_Sheets. Acesso em: 23 nov. 2023.

Arco do desmatamento. IPAM Amazônia. Disponível em:
https://ipam.org.br/glossario/arco-do-desmatamento/. Acesso em: 26 out. 2023.

BARTÍK, M.; PICHLOVÁ, D.; KUBÁTOVÁ, H. Hardware-software co-design: A
practical course for future embedded engineers, 2016 5th Mediterranean Conference
on Embedded Computing (MECO), Bar, Montenegro, 2016, pp. 347-350, doi:
10.1109/MECO.2016.7525779. Disponível em:
https://ieeexplore.ieee.org/document/7525779. Acesso em: 29 nov. 2023.

https://ieeexplore.ieee.org/document/7525779
https://ipam.org.br/glossario/arco-do-desmatamento/
https://www.researchgate.net/publication/342820766_Evaluation_of_Edge_Detection_Filters_Applied_to_Corroded_Steel_Sheets
https://www.researchgate.net/publication/342820766_Evaluation_of_Edge_Detection_Filters_Applied_to_Corroded_Steel_Sheets
https://ieeexplore.ieee.org/document/10194966
https://ani.stat.fsu.edu/~abarbu/papers/2019-LearnCV-ICIP.pdf
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://plataforma.bvirtual.com.br/
https://plataforma.bvirtual.com.br/

88

BHATTIPROLU, S. 63 - Image Segmentation using traditional machine learning Part1
- FeatureExtraction [Video], 2019. Disponível em: https://www.youtube.com/watch?
v=6yW31TT6-wA&list=PLZsOBAyNTZwYHBIlu_PUO19M7aHMgwBJr&index=68 .
Acesso em: 29 out. 2023.

BECKER, Bertha Koiffmann; STENNER, Claudio. Um futuro para a Amazônia. 1. ed.
São Paulo: Oficina de Textos, 2008. E-book. Disponível em:
https://plataforma.bvirtual.com.br. Acesso em: 24 out. 2023.

CATAPANG, J. K. Optimizing Speed and Accuracy Trade-off in Machine Learning
Models via Stochastic Gradient Descent Approximation, 2022 9th International
Conference on Soft Computing & Machine Intelligence (ISCMI), Toronto, ON,
Canada, 2022, pp. 124-128, doi: 10.1109/ISCMI56532.2022.10068476. Disponível
em: https://ieeexplore.ieee.org/document/10068476. Acesso em: 21 nov. 2023.

CHUGH, Roger Singh et al. A Comparative Analysis of Classifiers for Image
Classification, 2020 10th International Conference on Cloud Computing, Data
Science & Engineering (Confluence), Noida, India, 2020, pp. 248-253, doi:
10.1109/Confluence47617.2020.9058042. Disponível em:
https://ieeexplore.ieee.org/document/9058042. Acesso em: 19 nov. 2023.

Computador em Módulo NXP® i.MX 8: Apalis iMX8. Toradex, 2023-a. Disponível em:
https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8.
Acesso em: 29 nov. 2023.

DING, Lijun; GOSHTASBY, Ardeshir. On the Canny edge detector, Pattern
Recognition, Volume 34, Issue 3, 2001, Pages 721-725, ISSN 0031-3203,
https://doi.org/10.1016/S0031-3203(00)00023-6
(https://www.sciencedirect.com/science/article/pii/S0031320300000236)

FISHER, R. et al. Roberts Cross Edge Detector, 2003-a, The University of Edinburgh.
Disponível em: https://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm. Acesso em: 18
nov. 2023.

FISHER, R. et al. Sobel Edge Detector, 2003-b, The University of Edinburgh.
Disponível em: https://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm. Acesso em: 18
nov. 2023.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm
https://www.sciencedirect.com/science/article/pii/S0031320300000236
https://doi.org/10.1016/S0031-3203(00)00023-6
https://www.toradex.com/pt-br/computer-on-modules/apalis-arm-family/nxp-imx-8
https://ieeexplore.ieee.org/document/9058042
https://ieeexplore.ieee.org/document/10068476
https://plataforma.bvirtual.com.br/
https://www.youtube.com/watch?v=6yW31TT6-wA&list=PLZsOBAyNTZwYHBIlu_PUO19M7aHMgwBJr&index=68.Acesso
https://www.youtube.com/watch?v=6yW31TT6-wA&list=PLZsOBAyNTZwYHBIlu_PUO19M7aHMgwBJr&index=68
https://www.youtube.com/watch?v=6yW31TT6-wA&list=PLZsOBAyNTZwYHBIlu_PUO19M7aHMgwBJr&index=68

89

FISHER, R. et al. Gaussian Smoothing, 2003-c, The University of Edinburgh.
Disponível em: https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm. Acesso em:
18 nov. 2023.

FISHER, R. et al. Median Filter, 2003-d, The University of Edinburgh. Disponível em:
https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm. Acesso em: 18 nov. 2023.

Fronteira do desmatamento na Amazônia avançou entre 2018 e 2019, afirma estudo.
O Globo, 2019. Disponível em: https://oglobo.globo.com/brasil/fronteira-do-
desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480.
Acesso em: 27 out. 2023.

GOOGLE MACHINE LEARNING. Classificação: acurácia, 2023. Disponível em:
https://developers.google.com/machine-learning/crash-course/classification/
accuracy?hl=pt-br#:~:text=Informally%2C%20accuracy%20is%20the
%20fraction,predictions%20Total%20number%20of%20predictions. Acesso em: 21
nov. 2023.

GRILLI, Mariana. São Félix do Xingu é o município que mais emite CO2 no Brasil.
Globo Rural, 04 mar. 2021. Disponível em:
https://globorural.globo.com/Noticias/Sustentabilidade/noticia/2021/03/sao-felix-do-
xingu-e-o-municipio-que-mais-emite-co2-no-brasil.html. Acesso em: 27 out. 2023.

Image Classification and Analysis. Government of Canada, 2023. Disponível em:
https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-
and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/
image-classification-and-analysis/9361. Acesso em: 17 nov. 2023.

Ixora Carrier Board. Toradex, 2023-b. Disponível em:
https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board. Acesso em:
30 nov. 2023.

KANDEL, Ibrahem; CASTELLI, Mauro; POPOVIČ, Aleš. Comparative Study of First
Order Optimizers for Image Classification Using Convolutional Neural Networks on
Histopathology Images, National Library of Medicine, 2020. Disponível em:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321140/. Acesso em: 28 nov. 2023.

KULKARNI, Ajay; CHONG, Deri; BATARSEH, Feras A. Data Democracy, At the
Nexus of Artificial Intelligence, Software Development, and Knowledge Engineering,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321140/
https://www.toradex.com/pt-br/products/carrier-board/ixora-carrier-board
https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/image-classification-and-analysis/9361
https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/image-classification-and-analysis/9361
https://natural-resources.canada.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-sensing/image-interpretation-analysis/image-classification-and-analysis/9361
https://globorural.globo.com/Noticias/Sustentabilidade/noticia/2021/03/sao-felix-do-xingu-e-o-municipio-que-mais-emite-co2-no-brasil.html
https://globorural.globo.com/Noticias/Sustentabilidade/noticia/2021/03/sao-felix-do-xingu-e-o-municipio-que-mais-emite-co2-no-brasil.html
https://developers.google.com/machine-learning/crash-course/classification/accuracy?hl=pt-br#:~:text=Informally%2C%20accuracy%20is%20the%20fraction,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy?hl=pt-br#:~:text=Informally%2C%20accuracy%20is%20the%20fraction,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy?hl=pt-br#:~:text=Informally%2C%20accuracy%20is%20the%20fraction,predictions%20Total%20number%20of%20predictions
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480
https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480
https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

90

2020, Pages 83-106. Disponível em:
https://www.sciencedirect.com/science/article/pii/B9780128183663000058. Acesso
em: 21 nov. 2023.

MEHROTRA R., NAMUDURI K.R., RANGANATHAN N. Gabor filter-based edge
detection, Pattern Recognition, Volume 25, Issue 12, 1992, Pages 1479-1494, ISSN
0031-3203, https://doi.org/10.1016/0031-3203(92)90121-X.
(https://www.sciencedirect.com/science/article/pii/003132039290121X)

NIXON, Mark; AGUADO, Alberto. Gaussian Filtering, University of Southampton,
2002. Disponível em:
https://www.southampton.ac.uk/~msn/book/new_demo/gaussian/. Acesso em: 18
nov. 2023.

O que é machine learning?. IBM, 2023. Disponível em:
https://www.ibm.com/br-pt/topics/machine-learning. Acesso em: 16 nov. 2023.

pandas.DataFrame. pandas, 2023. Disponível em:
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html. Acesso em:
17 nov. 2023.

PERERA, C. J.; PREMACHANDRA, C.; KAWANAKA, H. Comparison of Light Weight
Hyperspectral Camera Spectral Signatures with Field Spectral Signatures for
Agricultural Applications, 2023 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 2023, pp. 1-3, doi:
10.1109/ICCE56470.2023.10043396. Disponível em:
https://ieeexplore.ieee.org/document/10043396. Acesso em: 29 nov. 2023.

PISL, J. et al. Classification of Tropical Deforestation Drivers with Machine Learning
and Satellite Image Time Series, IGARSS 2023 - 2023 IEEE International
Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 911-
914, doi: 10.1109/IGARSS52108.2023.10281472. Disponível em:
https://ieeexplore.ieee.org/document/10281472. Acesso em: 29 nov. 2023.

SAHU, Chandan Kumar; SHAMAR, Maitrey. HINGE LOSS IN SUPPORT VECTOR
MACHINES, School of Computer Sciences, National Institute of Science Education
and Research, Bhubaneshwar, Homi Bhabha National Institute, 2023. Disponível em:
https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf. Acesso em:
28 nov. 2023.

https://www.niser.ac.in/~smishra/teach/cs460/23cs460/lectures/lec11.pdf
https://ieeexplore.ieee.org/document/10281472
https://ieeexplore.ieee.org/document/10043396
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://www.ibm.com/br-pt/topics/machine-learning
https://www.southampton.ac.uk/~msn/book/new_demo/gaussian/
https://www.sciencedirect.com/science/article/pii/003132039290121X
https://doi.org/10.1016/0031-3203(92)90121-X
https://www.sciencedirect.com/science/article/pii/B9780128183663000058

91

sklearn.linear_model.SGDClassifier. scikit learn, 2023-a. Disponível em: https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html. Acesso
em: 20 nov. 2023.

SHAHAJAD M., GAMBHIR D. and GANDHI R. Features extraction for classification
of brain tumor MRI images using support vector machine, 2021 11th International
Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida,
India, 2021, pp. 767-772, doi: 10.1109/Confluence51648.2021.9377111. Disponível
em: https://ieeexplore.ieee.org/document/9377111. Acesso em: 17 nov. 2023.

SHIJIN KUMAR P. S.; DHARUN, V. S. Extraction of Texture Features using GLCM
and Shape Features using Connected Regions, Int. J. Eng. Technol, vol. 8, no. 6, pp.
29262930, 2016. Disponível em: https://www.enggjournals.com/ijet/docs/IJET16-08-
06-254.pdf. Acesso em: 17 nov. 2023.

The University of Auckland. Prewitt filter, 2023. Disponível em:
https://www.cs.auckland.ac.nz/courses%0B/compsci373s1c/PatricesLectures/
Prewitt_2up.pdf. Acesso em 18 nov, 2023.

Torizon OS Technical Overview. Toradex, 2023-c. Disponível em:
https://developer.toradex.com/torizon/torizoncore/torizoncore-technical-overview/.
Acesso em: 30 nov. 2023.

Universidade Federal Fluminense (UFF). Canny: detecção de borda, 2023.
Disponível em: http://profs.ic.uff.br/~aconci/canny.pdf. Acesso em: 18 nov. 2023.

Use containers to Build, Share and Run your applications. Docker, 2023. Disponível
em: https://www.docker.com/resources/what-container/. Acesso em: 30 nov. 2023.

ZANOTTA, D. C. et al. Automatic Methodology for Mass Detection of Past
Deforestation in Brazilian Amazon, IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 6610-
6613, doi: 10.1109/IGARSS.2019.8898606. Disponível em:
https://ieeexplore.ieee.org/document/8898606. Acesso em: 29 nov. 2023.

https://ieeexplore.ieee.org/document/8898606
https://www.docker.com/resources/what-container/
http://profs.ic.uff.br/~aconci/canny.pdf
https://developer.toradex.com/torizon/torizoncore/torizoncore-technical-overview/
https://www.cs.auckland.ac.nz/courses%0B/compsci373s1c/PatricesLectures/Prewitt_2up.pdf
https://www.cs.auckland.ac.nz/courses%0B/compsci373s1c/PatricesLectures/Prewitt_2up.pdf
https://www.enggjournals.com/ijet/docs/IJET16-08-06-254.pdf
https://www.enggjournals.com/ijet/docs/IJET16-08-06-254.pdf
https://ieeexplore.ieee.org/document/9377111
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

	RESUMO
	LISTA DE ILUSTRAÇÕES
	1 INTRODUÇÃO
	2 CONTEXTUALIZAÇÃO
	Com o intuito de apresentar um contexto para a aplicação deste trabalho, as seções seguintes constroem o panorama necessário para compreender o cenário atual do Brasil quanto à Floresta Amazônica, de modo que os resultados deste trabalho possam colaborar com sua preservação.
	2.1 CARACTERÍSTICAS GEOGRÁFICAS
	2.2 CARACTERÍSTICAS SOCIOAMBIENTAIS
	2.3 PROPOSTA DE TRABALHO
	3 METODOLOGIA
	3.1 COMPOSIÇÃO DO ACERVO DAS IMAGENS ORIGINAIS
	3.2 COMPOSIÇÃO DO ACERVO DAS IMAGENS DE REFERÊNCIA
	3.3 EXTRAÇÃO DE FEATURES – APLICAÇÃO DE FILTROS
	3.3.1 Pixeis Originais
	3.3.2 Filtros Gabor
	3.3.3 Filtro Canny
	3.3.4 Filtro Roberts
	Fonte: Google Earth (2023); Compilação do autor.
	3.3.5 Filtro Sobel
	Figura 10 - Exemplo de imagem original e sua respectiva versão com o filtro Sobel.
	Fonte: Google Earth (2023); Compilação do autor.
	3.3.6 Filtro Prewitt
	Fonte: Google Earth (2023); Compilação do autor.
	3.3.7 Filtro Gaussiano
	Fonte: Google Earth (2023); Compilação do autor.
	3.3.8 Filtro Mediana
	Fonte: Google Earth (2023); Compilação do autor.
	3.3.9 Filtro Chan-Vese
	Fonte: Google Earth (2023); Compilação do autor.
	3.4 MAPEAMENTO E ORGANIZAÇÃO DOS PIXEIS EM MATRIZ
	3.5 DIVISÃO DAS MATRIZES ENTRE TREINO E TESTE
	3.6 TREINO E TESTE DO MODELO DE MACHINE LEARNING
	3.6.1 Algoritmo Stochastic Gradient Descent (SGD)
	4 RESULTADOS
	
	A seguir, são mostrados os resultados da performance do modelo de classificação de imagem discutido nas seções anteriores. Além disso, cada um deles será discutido nesta mesma seção.

	4.1 EXECUÇÃO DO CÓDIGO
	Embora o número de fotos a serem utilizadas para treinar o modelo era de 160, devido a problemas de capacidade do hardware foi necessário reduzi-lo. Assim, o novo número de fotos treinadas foi 120, tendo, portanto, 62.208.000 pixeis como amostras (49.766.400 para o treino e 12.441.600 para o teste do modelo).
	Fonte: Compilação do autor.
	Como é possível perceber, de forma geral, a exatidão com até 35 fotos permanece acima de 70%, com uma queda contínua até 40 imagens, atingindo algo entre 70% e 67%. Esse comportamento pode ter sido provocado pela sequência dessas cinco imagens que contêm ou apenas uma classe, ou duas. Além disso, nas imagens com duas classes, existem regiões de floresta e rio e, como a coloração do rio é escura, é possível que o modelo tenha confundido com a coloração da floresta. A Figura 21 apresenta uma dessas cinco fotos e sua classificação diante do modelo.

	Figura 21 – Rio e floresta são confundidos na versão classificada pelo modelo.
	Figura 22 – Imagem com apenas floresta sendo classificada pelo modelo com outras classes.
	APÊNDICE A – CÓDIGO COMENTADO DA OBTENÇÃO DO MODELO DE MACHINE LEARNING
	REFERÊNCIAS
	Fronteira do desmatamento na Amazônia avançou entre 2018 e 2019, afirma estudo. O Globo, 2019. Disponível em: https://oglobo.globo.com/brasil/fronteira-do-desmatamento-na-amazonia-avancou-entre-2018-2019-afirma-estudo-1-24141480. Acesso em: 27 out. 2023.

